Science Technology Engineering Mathematics (STEM) through a WIND TURBINE

A K-12 Curriculum using a Wind Turbine

Authors:

Dr. Abha Singh Department of Curriculum and Instruction Western Illinois University, USA

Dr. James Olsen

Department of Mathematics Western Illinois University, USA

Dr. Laverne Logan

Department of Curriculum and Instruction Western Illinois University, USA

Dr. Robert Mann

Department of Mathematics Western Illinois University, USA

Dr. Kim Hartweg

Department of Mathematics Western Illinois University, USA

Main Question:

How are Communities Impacted by Renewable Energy Produced by WIND TURBINES?

"Wind for Schools (WfS) Wind Application Center (WAC) Operation Plan" 01/13/16

BACKGROUND

The Department of Energy (DOE)/National Renewable Energy Laboratory (NREL) launched a wind for schools (WfS) pilot project in Fiscal Year (FY) 2005 in Colorado which resulted in one (1) school small turbine project and many lessons learned. Eventually eleven (11) states (CO, KS, NE, AZ, PA, MT, SD, VA, NC, AK and ID) were funded under the WfS program. In 2013, Illinois (IL) joined the network and moved the total number of participating states to twelve (12). The WfS program's first long term objective was to develop in-state technical assistance capacity through the development of Wind Application Centers (WAC) located at a college or university in each state, in order to educate engineers in wind applications analysis and developing knowledge/skill sets that would make them more valuable to a growing wind workforce. The second objective of the WfS program was to educate students in wind energy and inspire them to pursue renewable energy areas of learning/careers past high school. Lastly, each of the one hundred and thirty-four (134) participating schools introduced a "community" to wind energy, providing opportunities for wind discussions with audiences beyond the classroom.

Implementing a school wind project is complex and involves many stakeholders. Based on experience, the WfS program originally determined that it was prudent to engage an in-state person to act as a State Facilitator and interact with the variety of stakeholders that become involved in a school wind project. The key stakeholders are the schools' administrations, the schools' science teachers, the associated communities, the state energy offices, local power suppliers, and in-state sponsorships. Over time, the WAC leadership has taken over this vital role in many of the states, becoming the main facilitator for WfS and community wind development within those states.

Although activities initially focused on schools typically in rural areas, the expectation is that through the development of WfS activities, individuals, businesses and utilities within the extended community will become interested in wind energy as a supply option for their homes, farms, and businesses, in both rural and suburban communities. The WAC, through direct activities and the education of students who enter the workforce, will then be able to address these other markets. The expectation was also that WAC leadership would become centers of wind expertise that supported local governments, state regulators and other state officials as needed to appropriately address the deployment of wind energy in the state.

Initially, a primary activity for each WAC and state facilitator was to train undergraduate students in wind energy development, using the classroom instruction and the installation of small wind turbines at K-12 host schools. Over one hundred and thirty (130) small turbines were installed across the twelve (12) states. A second focus was to engage students, educators, and the local communities around host schools, providing K-12 teacher training

and engagement opportunities between students of different ages, increasing interest in science, technology, engineering and math (STEM) disciples. Since the launch of the activity some state programs have adjusted activities away from "new" turbine installations, refocusing their efforts on education programming, data collection improvements, and supporting the maintenance of the existing fleet of turbines within their state. A new networking tool has been developed on OpenEI (i.e. Wind for Schools Portal) that is the platform used by all of the WACs and schools as a central database for each turbine's performance data. Basic data analysis tools are also available on the WfS website as well as a curricula database and other educational resources.

Jolene Willis facilitated the development of a K-12 STEM based science curriculum using a WIND TURBINE using funds from the project's background described above.

Jolene S. Willis, M.P.A. Illinois Institute for Rural Affairs Western Illinois University T: <u>309.298.2835</u> | js-willis@wiu.edu www.wiu.edu | www.iira.org

Program Areas:

Associate Manager, Illinois Cooperative Development Center Sustainable Development Specialist, Value-Added Sustainable Development Center Program Advisor, WIU Interdisciplinary Studies Degree - Renewable Energy Concentrations

Top 7 Useful Things to Know About the STEM Through a Wind Turbine K-12 Curriculum OR

Top 7 Reasons Why You Might Want to Use Lessons from the STEM Through a Wind Turbine Curriculum in Your Classroom

1. Storyline - This curriculum is based on one main question: How are Communities Impacted by Renewable Energy Produced by Wind Turbines? Each of the 12 lessons* in this curriculum, in turn, is based on a grade-level appropriate question:

	K-2	3-5	6-8	9-12
12 Lesson Titles/ Unit Questions	 Do I use a resource? Do the resources I use run out? What is wind? What is a wind turbine? 	 5. Is it important to use renewable resources? 6. How can you use a renewable resource like wind to make energy with a wind turbine? 7. How can you are an area 	 8. How can a better design of a wind turbine blade be investigated? 9. How can human impact on the environment be reduced by using a wind turbine? 	 11. How can I design better wind turbine blades for increased energy production? 12. How can state/national wind turbine data be used to provide evidence to address the use of a natural resource
		7. How can more energy be obtained from two designs of wind turbines?	10. How does it compare when energy is produced by wind turbine or with burning coal?	a natural resource for energy production?

- 2. This curriculum implements standards from NGSS (Next Generation Science Standards) and CCSSM (Common Core State Standards for Math).
- 3. Lessons use everyday materials that are readily available. For example: rubber bands, paper cups, string, and cardboard.
- 4. **STEM** (Science, Technology, Engineering, Mathematics) are interwoven in lesson. While integration of STEM concepts can be challenging, using a wind turbine makes the integration natural. There is a progression from awareness of concepts in elementary grades to qualitative understanding in middle school to quantitative understanding and evidence-building in high school.
- 5. Each lesson uses the **5E Teaching Model** (a research-based best practice). Engagement: Stories or Videos used to create interest; Exploration: Student activity; **Explanation**: Students explain concepts; **Extension**: Options for deeper learning; **Evaluation**: Assessment options.
- 6. Teacher Edition (background information and objectives) and Student Edition (which can be used as a handout) provided for each lesson. The progression (1, 2, 5) on the Student Edition handouts correspond to the 5E Teaching Model. While curriculum is provided in large PDF file, teachers can jump ahead to lessons in grade-level band.
- 7. *Lessons are flexible and adaptable and each is independent. For example, Lesson 6 (from table above) could be used in grades 3, 4, or 5. It does not assume students have done any of the previous lessons in the curriculum. The lesson can be adapted to various student differentiation levels and interests and classroom settings.

Curriculum is a free download at http://faculty.wiu.edu/jR-Olsen/wiu/tea/Wind/Wind-NGSS.html

each

straws,

TABLE OF CONTENTS

Main Question: Background Information	1
Top 7 Useful Things to Know about the STEM through a Wind Turbine	3
Teacher Guide	5
Lesson 1: Teacher and Student Edition	14
Lesson 2: Teacher and Student Edition	24
Lesson 3: Teacher and Student Edition	30
Lesson 4: Teacher and Student Edition	38
Lesson 5: Teacher and Student Edition	44
Lesson 6: Teacher and Student Edition	53
Lesson 7: Teacher and Student Edition	61
Lesson 8: Teacher and Student Edition	74
Lesson 9: Teacher and Student Edition	85
Lesson 10: Teacher and Student Edition	93
Lesson 11: Teacher and Student Edition	105
Lesson 12: Teacher and Student Edition	117
Authors Information	127

K-12 STEM curriculum USING A WIND TURBINE

Progressions within *Disciplinary Core Idea*

	K-2	3-5	6-8	9-12		
ESS3.A Natural Resources Standard: <i>K-ESS3-1 Earth and Human Activity</i>	DCI Living things need water, air, and resources from the land, and they live in places that have the things they need. Humans use natural resources for everything they do. P.E. Use a model to represent the relationship between the needs of plants and animals (including humans) and the places they live.	Energy and fuels that humans use are derived from natural sources and their use affects the environment. Some resources are renewable over time, others are not.	Humans depend on Earth's land, ocean, atmosphere, and biosphere for different resources, many of which are limited or not renewable. Resources are distributed unevenly around the planet as a result of past geologic processes.	Resource availability has guided the development of human society and use of natural resources has associated costs, risks, and benefits.		

A. Earth Space Science Progression

	K-2	3-5	6-8	9-12
PS3.B Conservation of energy and energy transfer	Sunlight warms Earth's surface.	Moving objects contain energy. The faster the object moves, the more energy it has. Energy can be moved from place to place by moving objects, or through sound, light, or electrical currents. Energy can be converted from one form to another form.	Kinetic energy can be distinguished from the various forms of potential energy. Energy changes to and from each type can be tracked through physical or chemical interactions. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter.	The total energy within a system is conserved. Energy transfer within and between systems can be described and predicted in terms of energy associated with the motion or configuration of particles (objects).

B. Physical Science Progression

K-2	3-5	6-8	9-12
Asking questions and defining problems in K–2 builds on prior experiences and progresses to simple descriptive questions that can be tested. -Ask questions based on observations to find more information about the natural and/or designed world(s). - Ask and/or identify questions that can be answered by an investigation. -Define a simple problem that can be solved through the development of a new or improved object or tool.	Asking questions and defining problems in 3–5 builds on K–2 experiences and progresses to specifying qualitative relationships. - Ask questions about what would happen if a variable is changed. -Identify scientific (testable) and non-scientific (non- testable) questions. -Ask questions that can be investigated and predict reasonable outcomes based on patterns such as cause and effect relationships. -Use prior knowledge to describe problems that can be solved. -Define a simple design problem that can be solved through the development of an object, tool, process, or system and includes several criteria for success and constraints on materials, time, or cost.	Asking questions and defining problems in 6–8 builds on K–5 experiences and progresses to specifying relationships between variables, and clarifying arguments and models. -Ask questions - that arise from careful observation of phenomena, models, or unexpected results, to clarify and/or seek additional information. -to identify and/or clarify evidence and/or the premise(s) of an argument. -to determine relationships between independent and dependent variables and relationships in models. -to clarify and/or refine a model, an explanation, or an engineering problem. -that require sufficient and appropriate empirical evidence to answer. -that can be investigated within the scope of the classroom, outdoor environment, and museums and other public facilities with available resources and, when appropriate, frame a	Asking questions and defining problems in 9–12 builds on K– 8 experiences and progresses to formulating, refining, and evaluating empirically testable questions and design problems using models and simulations. Ask questions - that arise from careful observation of phenomena, or unexpected results, to clarify and/or seek additional information. -that arise from examining models or a theory, to clarify and/or seek additional information and relationships. -to determine relationships, including quantitative relationships, between independent and dependent variables. -to clarify and refine a model, an explanation, or an engineering problem. Evaluate a question to determine if it is testable and relevant. -Ask questions that can be investigated within the scope of the school laboratory, research facilities, or field (e.g., outdoor environment)

C. Progression with Science and Engineering Practices

	hypothesis based on observations and scientific principles. -that challenge the premise(s) of an argument or the interpretation of a data set. -Define a design problem that can be solved through the development of an object, tool, process or system and includes multiple criteria and constraints, including scientific knowledge that may limit possible solutions.	with available resources and, when appropriate, frame a hypothesis based on a model or theory. -Ask and/or evaluate questions that challenge the premise(s) of an argument, the interpretation of a data set, or the suitability of a design. -Define a design problem that involves the development of a process or system with interacting components and criteria and constraints that may include social, technical, and/or environmental considerations.
--	---	---

Please select from the Disciplinary Core idea of Earth Space Science and Physical Science using Science and Engineering Practices from page 1-3 to create questions.

Our Goal: Develop K-12 STEM curriculum that promotes understanding, application, analysis and synthesis of a wind turbine.

Main Question: How are communities impacted by renewable energy produced by wind turbines?

Performance Expectations (PE's)

Next Generation Science Standard (NGSS): Earth and Human Activity

Students who demonstrate understanding can:

(K-2) K-ESS3-3: Communicate solutions that will reduce the impact of humans on land, water, air and/or other living things in the local environment. (Clarification Statement: Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles). Specific DCI: Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things.

(3-5) 4- ESS3-1: Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment. (Clarification Statement: Examples of renewable energy resources could include wind energy, water behind dams, and sunlight; nonrenewable energy resources are fossil fuels and fissile materials. Examples of environmental effects could include loss of habitat due to dams, loss of habitat due to surface mining, and air pollution from burning of fossil fuels).

Specific DCI: Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not.

(6-8) MS-ESS3-3: Apply scientific principles to design a method for monitoring and minimizing human impact on the environment. (Clarification Statement: Examples of the design process include examining human impacts. This can include water usage such as the withdrawal of water from streams; land use, and pollution of air, water or land).

Specific DCI: Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.

(9-12) HS- ESS3-4: Evaluate or refine a technological solution that reduces impacts of human activities on natural systems. (Clarification Statement: Examples of data on the impacts of human activities could include the quantities and types of pollutants released, changes to biomass and species diversity, or areal changes in land surface use (such as for urban development, agriculture and livestock, or surface mining). Examples for limiting future impacts could range from local efforts (such as reducing, reusing, and recycling resources) to large-scale geoengineering design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean)).

Specific DCI: Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that preclude ecosystem degradation.

	К-2	3-5	6-8	9-12
Unit Questions	 Do I use a resource? Do the resources I use ever run out? What is wind? What is a wind turbine? 	 5. Is it important to use renewable resources? 6. How can you use a renewable resource like wind to make energy with a wind turbine? 7. How can more energy be obtained from two designs of wind turbines? 	 8. How can a better design of a wind turbine blade be investigated? 9. How can human impact on the environment be reduced by using a wind turbine? 10. How does it compare when energy is produced by wind turbine or with burning coal? 	 11. How can I design better wind turbine blades for increased energy production? 12 How can state/national wind turbine data be used to provide evidence to address the use of a natural resource for energy production?

Subject/Grade (DCI): Science/Earth Science/ /K-2 (Human Impacts on Earth Systems, DCI).

Big Idea Statement: What are some natural resources and its uses? (CCC)

Next Generation Science Standard: K-ESS3 Earth and Human Activity: Performance Expectation

Students who demonstrate understanding can:

K-ESS3-3: Communicate solutions that will reduce the impact of humans on land, water, air and/or other living things in the local environment. (Clarification Statement: Examples of human impact on the land could include cutting trees to produce paper and using resources to produce bottles. Examples of solutions could include reusing paper and recycling cans and bottles). Specific Disciplinary Core Idea: ESS3.C: Human Impacts on Earth Systems

Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things. (K-ESS3-3)

Connections to other DCIs in kindergarten:

K.ETS1.A (K-ESS3-2),(K-ESS3-3)

Articulation of DCIs across grade-levels:

1.LS1.A (K-ESS3-1); 2.ESS1.C (K-ESS3-2); 2.ETS1.B (K-ESS3-3); 3.ESS3.B (K-ESS3-2); 4.ESS3.A (K-ESS3-3); 4.ESS3.B (K-ESS3-2); 5.LS2.A (K-ESS3-1); 5.ESS2.A (K-ESS3-1); 5.ESS3.C (K-ESS3-3)

Common Core State Standards Connections:

ELA/Literacy -

RI.K.1 With prompting and support, ask and answer questions about key details in a text. (K-ESS3-2)

W.K.2 Use a combination of drawing, dictating, and writing to compose informative/explanatory texts in which they name what they are writing about and supply some information about the topic. (K-ESS3-3)

SL.K.3 Ask and answer questions in order to seek help, get information, or clarify something that is not understood. (K-ESS3-2)

SL.K.5 Add drawings or other visual displays to descriptions as desired to provide additional detail. (K-ESS3-1)

Mathematics -

MP.2 Reason abstractly and quantitatively. (K-ESS3-1)

MP.4 Model with mathematics. (K-ESS3-1), (K-ESS3-2)

K.CC Counting and Cardinality (K-ESS3-1), (K-ESS3-

Question	Phenomena	Engineering and Scientific Practice(s)	Disciplinary Core Idea (DCI) What we figured out.	Cross Cutting Concepts (CCC)		
Do I use a resource?	Take students outside to experience the wind by observing a flying kite. Read a fiction book on wind. Students are taken outside the classroom on a warm sunny day and are asked about	Communicate solutions with others in oral and/or written forms using models and/or drawings that provide detail about scientific ideas. Asking questions and	Things that people do to live comfortably can affect the world around them. They can make choices that reduce their impacts on the land, water, air, and other living things.	Events have causes that generate observable patterns.		

Storyline Chart

K-2

	how they feel. Students are taken outside to blow bubbles in the wind. They are asked to explain what takes bubbles away.	defining problems in K– 2 builds on prior experiences and progresses to simple descriptive questions that can be tested.		
Do the resources I use ever run out?	Students complete a KWL about renewable and nonrenewable resources. As an introductory phenomenon, students will view a video/song about renewable and nonrenewable resources. How does this get to run out?	Obtaining, evaluating, and communicating information and uses observations and texts to communicate new information Asking questions and defining problems in K– 2 builds on prior experiences and progresses to simple descriptive questions that can be tested.	Things that people do to live comfortably can affect the world around them. But they can make choices that reduce their impacts on the land, water, air, and other living things <u>.</u>	Events have causes that generate observable patterns.
What is wind?	Learners are taken outside the classroom on a windy day.			
What is a wind turbine?	Field trip to the site of a wind turbine.	Obtaining, evaluating, and communicating information and uses observations and texts to communicate new information.	Designs can be conveyed through sketches, drawings or a physical model.	Events have causes that generate observable patterns.

Asking questions and defining problems in K– 2 builds on prior experiences and progresses to simple descriptive questions that could be tested.	
---	--

Lesson 1: Do I use a Resource?

Lesson 1 Objective: By the end of the lesson, learners should be able to identify a natural resource they use?

Engagement	Exploration	Explanation	Extension	Evaluation
As an introductory phenomena, take students outside and let them experience the flying of a kite. Do not tell them that you want them to experience the wind.	Question: How can I make the ping pong ball move faster using blown air and a hand held fan? Tell students that they will be creating their own wind by a blowing air and by using a hand	Students present their posters to the class explaining what they discovered about how wind was created, and how it was used to move the ping pong ball faster with one method.	Teacher brings several balloons filled with air and some that are not filled with air in the class. Ask students: Is the air in the balloon the same	Students are given a fill in the blanks worksheet that they may illustrate or write their answers. 1. The blew my hair. (Wind)
Ask students: What did you observe outside?	held fan that is moved fast near an object.		as the one used to move the ping pong ball?	2.I use the wind to my balloons.(Fill)
What did you feel? Was there something you felt that was moving your	Materials: Ping Pong Ball, hand held fan.		Where does wind come from?	3. It was faster for me to move my ping pong ball
hair and clothes?	Tell the students that they have to move the ping pong ball from		Is it always there? Does it only happen	from one place to the next using .(My hand
dust in your hand and let it go in the wind. Ask	their table to a point the teacher has created.		when I move something, like I moved the hand held fan?	held fan)
and why? What was it? How did it	the ping pong ball first. Then they can use the		Show a short video (1-2	. (Natural Resource).
make you feel? Take the students in the	hand held fan to complete the task.		min) of the hot air balloons? Ask students: What is	5. The hot air balloon is one other way

class after the brief	Task: Students illustrate	it?	is used
discussion and ask them	on a poster paper the	How does it move? If	(Wind)
to write on the board	path the ping pong ball	the wind was taken	(wind).
what they THOUGHT	took when it was moved	away from the hot air	
of the WIND and	from one location to the	halloon what would	
WHAT OUESTIONS	next They will use the	happen to the halloon?	
they have about the	classroom clock to keen	happen to the balloon.	
WIND	track of time	Generate discussion	
	track of time.	about how wind is a	
Tall the students I will		notural resource and it	
read a book and then I		is always there for use	
read a book and then I		is always there for use .	
will ask a few questions		What is the meaning of	
about it.		What is the meaning of	
Deed a firstien healt		Natural? (Nature	
Read a fiction book		Made)	
about the Wind:			
Example- The Wind		what is the meaning of	
Blew.		Resource? (Something	
		that I may use)	
Ask students:			
What caused the events		We have used the wind	
in the story?		in what two ways today?	
How you was had an		Could wind be used for	
Have you ever had an		Could wind be used for	
experience with the		any other purpose?	
wind in the book?			
How can we make wind			
in the classroom?			
How do we use wind?			
110 w uo we use willd?			

STEM Connections:

Science: DCI-Things that people do to live comfortably can affect the world around them. People can make choices that reduce their impacts on the land, water, air, and other living things.

Technology: Use of manipulatives

Engineering: Design to obtain qualitative data from structured exploration

Mathematics: Analysis of qualitative data from exploration

Lesson 1

Do I use a Resource?

1.1. What will you do today?

You will go outside to the playground and *observe* the following things that the teacher will demonstrate:

- a. Bubbles being blown from a source.
- b. Dust or dirt being blown from the teacher's hand.
- c. Flying a kite.

1.2. Making Sense: You are provided with a small whiteboard and a dry erase pen –

- 1. Draw to explain what you saw happen in 1.1.a.
- 2. Draw to explain what you saw happen in 1.1.b.

3. Draw to explain what you saw happen in 1.1.c.

1.3. Your teacher will ask you to explain in words what you observed.

2.1. What will you do?

- a. You will move a ping-pong ball from location marked "A" on your table to location marked "B" by blowing on the ping-pong ball.
- b. This task needs to be completed two times.

2.2. Predict: Write and draw to explain what you think will happen.

2.3. Draw the path the ping-pong ball took when it moved from one location to

the next.

a. Path 1:

b. Path 2:

- 3.1. Present your poster with your group to your peers. When you present your poster explain:
- a. Where you placed the ping-pong ball at the start of the investigation?

b. What did you have to do to get the ping-pong ball to move from location "A" to location "B"?

c. Did you find it challenging to move the ping-pong ball by blowing on it?

3.2. Explain, in your own words, what caused the pin-pong ball to move.

4.1. Making Sense: Discussion

Observe a demonstration conducted by your teacher. The teacher will take a few balloons and fill them with air as students observe. The teacher will ask you the following questions:

a. Is the air filled in the balloon the same as the air you used to move the ping-pong ball?

b. Is the air always there?

c. Does the air only happen when I blow something like a ping pong ball?

4.2. Video on hot air balloons and air. Some questions will be asked after you view the video/s.

Wind by Bill Nye the Science Guy <u>https://www.youtube.com/watch?v=uBqohRu2RRk</u>

Sun, Air, and Wind for Kids https://www.youtube.com/watch?v=tfAB4BXSHOA

Wind and Air https://www.youtube.com/watch?v=niZ_cvu9Fts

a. What was the video about?

b. Where is air?

- c. Where does the wind come from? Is it always there?
- d. If something is always there, what is it called?
- e. Is air and wind the same thing?
- f. How is air and wind different?
- g. What does Natural mean?
- h. What does resource mean?

5.1. What did I learn?

Fill in the blanks:

You will demonstrate your learning by answering the listed questions. You may work with your peer or on your own.

- 1. The ______ blew the balloon and the kite.
- 2. Moving air is called______.
- 3. I used blowing air to _____ the ping-pong ball.
- 4. The teacher used ______ to fill the balloons.
- 5. Hot air is used in hot air _____.
- 6. The wind is always present. It is ______.
- 7. If I use something it is called a ______.

8. The wind is a ______.

Lesson 2: Do the resources I use ever run out?

Lesson 2 Objective: By the end of this lesson, learners should be able to describe natural resources that are renewable and nonrenewable.

Engagement	Exploration	Explanation	Extension	Evaluation
Students complete a KWL about renewable and nonrenewable resources. As an introductory phenomenon, students will view a video/song about renewable and poprenewable resources	Students will be provided with many children's picture books on several resources. They will go over the books. Each group will get one kind of resource. Students will take turns to read aloud about the	Students will need to role play the information they obtained about the particular renewable and nonrenewable resource they have been provided.	Students will play a Natural Resource Card Sort game in their groups. This card game contains 18 cards with definitions and pictures of renewable and poprenewable resources	Students complete the "L" from the KWL chart on the board. A smart board lesson is conducted which draws meaning of nonrenewable and renewable resources.
honrenewable resources. https://www.youtube.co m/watch?v=mmgyNPF0 n1k https://www.youtube.co m/watch?v=MHutG0e5 80s After viewing the video, students will be asked questions about what	to read aloud about the resource. 1.Sun Power A book about renewable energy 2. This is the tree 3.Natural resources 4. Energy Island (Wind) 5.Energy for Keeps 6.Look after your planet 7. Waiting for Ice	Students also create an illustration of the renewable and nonrenewable resource allocated to them, as it is demonstrated in the poster below from Pinterest.	nonrenewable resources. Free Source: Teachers pay Teachers Natural resource card sort Students can sort cards as renewable and nonrenewable resources as well as match the definition. This product can be used as a simple	Smart board exchange lesson: Natural Resources in my home. <u>http://exchange.smarttec</u> <u>h.com/details.html?id=a</u> <u>804b6f7-1249-4e49-</u> <u>a664-5b186e8b4569</u> Discussion about what
they discovered about resources that run out (nonrenewable) and ones that don't (renewable).			assessment of student understanding of natural resources. The teacher discusses	happens when a resource we need is no longer available.

STEM Connections:

Science: Content about renewable and nonrenewable resources

Technology: View content about renewable and nonrenewable resources through videos

Engineering: Learners design and create illustrations of renewable and nonrenewable resources

Mathematics: Learners sort and play a card game related to renewable and nonrenewable resources

Lesson 2

Do the resources I use ever run out?

1.1. What will you do today?

There is a KNOW-WANT TO KNOW-LEARNED (KWL) chart below about <u>Renewable</u> and <u>Nonrenewable</u> <u>Resources.</u>

You need to write <u>two</u> points about **Renewable** and <u>two</u> points about **Nonrenewable** resources for what you know (K), and for what you want to know (W). <u>Do not write</u> about Learned (L) right now?

K:		 	 	
	-			
W:				
	_			
 L:				

1.2. Making Sense: You are provided with an I-Pad or a device. You need to view and listen to two locations from the following two web links.

a. A song

https://www.youtube.com/watch?v=mmgyNPF0n1k

b. Video on Renewable and Nonrenewable Resources

https://www.youtube.com/watch?v=MHutG0e58os

After viewing the videos you will write

- 1. QUESTIONS on the (W) section of the KWL (page 1) of this handout.
- 2. On the small whiteboard, with a dry erase pen provided to you, explain

What did you **discover** about resources that run out (nonrenewable) and ones that don't (renewable) from the two videos you viewed?

2.1. A book is assigned to you.

You are in a group of three peers. You are assigned a book. Each team member will take turns to read aloud a section of the book.

My book is: _____

2.2. What will you do?

a. You will discuss the book with your group. Name the book you were provided.

My book is:	
-------------	--

The questions you will discuss are:

a. What is the book about?

b. What did you learn from the book? ______

- 3.1. Your group will role play the information from the book you read aloud and discussed. You have 2 minutes to summarize the book with your peers.
- 3.2. You will create a poster about renewable and nonrenewable resources with your group. You will present your poster to your peers.

4.1. Making Sense: Play a Natural Resource Card Game in your group.

How you will play the card game?

This card game contains 18 cards with definitions and pictures of renewable and nonrenewable resources. Your group will sort cards as renewable and nonrenewable resources as well as match the definition. This product can be used as a simple assessment of student understanding of natural resources.

Show and tell your teacher when your group completes the game.

5.1. What did I learn?

- a. Fill in the Learn "L" from the KWL chart found on page 1 of the lesson.
- b. Write on the smart board section about the "L" you wrote in your student booklet.

5.2. What did I learn?

Answer the following questions:

- a. What is one resource you use that will run out?
- b. What is one resource you use that will not run out?

Now your teacher will discuss what you learned from the lesson on renewable and nonrenewable resources.

Lesson 3: What is wind?

Lesson 3 Objective: By the end of this lesson, learners should be able to describe what wind is and demonstrate what it is able to do.

Engagement	Exploration	Explanation	Extension	Evaluation
Learners are taken	Learners will complete a	After the exploration,	The teacher will use a	The teacher prepares
outside the classroom on	jigsaw puzzle about	the teacher will gather	picture chart to show	exit slips. Learners are
a windy day and they	wind.	the learners to a central	what happens over the	given sticky parts of the
are asked to observe		area, where the learners	ocean water when the	section on what is wind
what happens to their	Learners work with a	will explain what their	sun heats the water. The	and how it forms and
clothes and hair when	partner and build a wind	drawings of their	teacher describes what	they are asked to paste it
outside. Learners are	detector with a popsicle	observations were.	wind is and how it is	on an assessment board.
asked to observe it for a	stick and yarn. The		formed. The picture	
few minutes.	learners will go outside	The teacher will ask	chart will have stick	
	and observe what	questions about their	parts which individual	
Learners view a short	happens to the yarn on	observations.	students will be asked to	
video of a tornado to	the popsicle stick. The		come up and paste on	
observe what wind	learners will observe	The teacher will ask:	the board based on the	
could do.	what will happen to the	What happened to the	story as it is being	
	yarn when they are in a	yarn on the popsicle	described by the teacher.	
Learners are asked to	sunny spot, a shaded	stick when it was in the		
write questions about	spot and inside the	classroom, in the sunny	The teacher goes over	
what they observed	classroom. The learners	outdoors, and in the	student generated	
outside and in the	will draw on the	shaded area. Did you	questions in the	
videos.	provided worksheet	observe a difference in	engagement section of	
	what they saw happen to	the observations in the	the lesson. The teacher	
The teacher creates a	the yarn in these three	three locations? Why do	discusses the questions	
large organizer of the	locations.	you think there was a	and addresses them	

KWL chart on the board and students write about what they know about what they observed when they were outside and what questions they have about what they observed in the video.	difference in the observations?	through discussion with learners.	
The teacher goes over the observations listed on the board.			
The teacher asks the students what they observed about what was happening to their clothes and hair when they went outside. Expected answer: Clothes and hair were moving fast. The Teacher asks the students to describe why their clothes and hair were moving. Expected answer: The wind was causing the clothes and hair to move.			
The teacher asks: What is wind?			

Expected answers: It makes leaves of plants move. It causes my dress to sway.		
The teacher will inform the learners that they will explore the wind today.		

STEM Connections:

Science: Identify the characteristics of wind

Technology: Manipulate the Popsicle stick

Engineering: Design a tool with the Popsicle stick and yarn to identify wind and its direction

Mathematics: Qualitatively identify what happens to the yarn when there is high or low wind

Student Edition (K-2)

Lesson 3

What is Wind?

1.1. What will you do today?

You are taken outside the classroom with your teacher.

Draw and write what you felt outside.

Draw:

Write:_____

1.2. Making Sense: You will view two videos about a tornado.

a. Video 1

https://www.youtube.com/watch?v=x8eWEHuCtUk

b. Video 2

https://www.youtube.com/watch?v=vH4YT9secVw

After viewing the videos you will think of and write two questions.

a. Question 1:

b. Question 2:

2.1. What will you do?

a. You are placed in pairs. You are provided with a Popsicle stick and yarn. You need to tie the yarn at the top of the Popsicle stick so that most of the yarn is hanging from the Popsicle stick.

b. You will take the Popsicle stick with the yarn outside the class with your partner and your teacher.
c. You will place the Popsicle stick in three locations outside. You may hold up the Popsicle stick with the yarn by raising your arm towards the sky or roof of your class. You will need to draw/sketch what happened to the yarn that is tied to the Popsicle stick.

- 1. A shady spot (under a tree)
- 2. An open spot (not under a tree)
- 3. In the classroom

Draw or sketch in the appropriate column:

A shady spot	An open spot	In the classroom
(under a tree)	(not under a tree)	

2.2. Making Sense: Students will explain

Your group will role play and explain for your peers what you illustrated in 2.1.

Your teacher will ask you several questions regarding what you observed while you were working with your Popsicle stick outdoors and indoors.

3.1. Making Sense: Your teacher will explain the process of formation of wind due to evaporation.

The story of the movement of the wind is illustrated by the teacher. Students are encouraged to ask questions based on the story about how wind is created over the ocean and the teacher discusses the questions.

4.1. What did I learn?

You will obtain an **Exit Slip** from your teacher. The exit slip is to be completed by you independently. After writing the answer on the Exit Slip, post it on the board which has a sign "Exit Slip".

The questions asked on the exit slips are:

- 1. What is wind?
- 2. Where does it form?
- 3. How can you show what wind does?
- 4. Explain what happened to the yarn on the Popsicle stick in the shade.

- 5. Explain what happened to the yarn on the Popsicle stick in the classroom.
- 6. Why does wind blow?

Lesson 4: What is a wind turbine?

Lesson 4 Objective: By the end of this lesson, learners should be able to identify a wind turbine and learn how wind is used.

Engagement	Exploration	Explanation	Extension	Evaluation
Learners are taken on a	Learners are provided	Learners will observe	The teacher will read	Independently, students
field trip to the site of a	with paper to assemble	carefully how each part	aloud a book -	complete an exit quiz on
wind turbine.	and build a wind turbine	of a pinwheel was	The Boy Who Harnessed	wind turbines.
	in their groups	assembled to make the	the Wind.	
They are asked to	(pinwheel).	wind turbine. Learners		What is wind?
observe it for a few		will have a poster	A video clip is shown to	
minutes. A guest	http://www.wikihow.co	provided with each part	the learners about how a	What does a wind
speaker is invited to	m/Make-a-Pinwheel	of the wind turbine	wind turbine is made to	turbine do?
speak to the class at the		illustrated. Learners will	work.	
site of the wind turbine.	Guidance is provided by	write or sketch to		Why are wind turbines
	the teacher and the	explain what each part	Clean Green Energy	useful?
Learners are encouraged	instructions provided.	of the wind turbine is	Cartoon	
to ask questions about		doing to make the wind	https://www.youtube.co	I can make a pinwheel
the wind turbine.	Small fans are used to	turbine work. Learners	<u>m/watch?v=Quy-</u>	that resembles a wind
	provide wind to make	will present the	<u>b_ZOxBA</u>	turbine using the
Learner's questions are	the wind turbines work	information to the class,		following materials -
also collected by the	for students.	while the teacher is able	Wind Power for Kids	Paper
teacher as they will be		to add to the information	https://www.youtube.co	Stick
discussed in class after	If the day is windy,	they have been able to	m/watch?v=niZ_cvu9Ft	A small pin
the field trip is over. All	learners are taken	observe from the	<u>s</u>	A small fan
the questions are posted	outside to test the	assembled and working		A foot ruler
on the board.	pinwheels they have	wind turbine.	After viewing the video,	Glue
	made.		teacher initiates	Pencil

Students are asked - how is a pinwheel similar and differen wind turbine?	o a	discussion about what a wind turbine is useful for and how it is used these days.	Scissors
--	-----	--	----------

STEM Connections:

Science: How can wind be harvested?

Technology: The wind turbine

Engineering: The designs and development of wind turbines that harvest the most wind to generate electricity

Mathematics: How can wind speed be quantified?

Subject/Grade (DCI): <u>Science/Earth Science/ /3-5</u> (Use of Natural Resource, Energy and fuels that humans use are derived from natural resources and their uses affects the environment in multiple ways, DCI).

Big Idea Statement: How do natural resources yield renewable and nonrenewable resources (CCC)?

NGSS Standard: Earth and Human Activity

3- ESS 3-1: Performance Expectation

Students who demonstrate understanding can:

Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment. (Clarification Statement: Examples of renewable energy resources could include wind energy, water behind dams, and sunlight; nonrenewable energy resources are fossil fuels and fissile materials. Examples of environmental effects could include loss of habitat due to dams, loss of habitat due to surface mining, and air pollution from burning of fossil fuels). Specific Disciplinary Core Idea: Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not.

Common Core State Standards Connections: Connections to other DCIs in third grade: N/A Articulation of DCIs across grade-levels: K.ESS3.B; K.ETS1.A; 4.ESS3.B; 4.ETS1.A; MS.ESS3.B Common Core State Standards Connections: ELA/Literacy — W.3.1 Write opinion pieces on topics or texts, supporting a point of view with reasons. (3-ESS3-1)

W.3.7 Conduct short research projects that build knowledge about a topic. (3-ESS3-1)

Mathematics —

MP.2 Reason abstractly and quantitatively. (3-ESS3-1)

MP.4 Model with mathematics. (3-ESS3-1)

Storyline Chart

3-5

Question	Phenomena	Engineering and Scientific Practice(s)	Disciplinary Core Idea (DCI) What we figured out?	Cross Cutting Concepts (CCC)
Lesson 5: Is it important to use renewable resources?	Read or present audio/video of <i>The</i> <i>Lorax-</i> by Dr. Seuss https://www.youtube.co m/watch?v=r18SCHVs <u>UX4</u> The Lorax speaks for the trees, which everyone, everyone, everyone needs. In this read along story book for children, read aloud to them. Adults read more into this book than children, but every kid sees that the Once-ler regrets destroying in order to create. A great lesson can be learned with this book.	Obtaining, Evaluating, and Communicating Information Obtaining, evaluating, and communicating information in 3–5 builds on K–2 experiences and progresses to evaluate the merit and accuracy of ideas and methods.	ESS3.A: Natural Resources Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not.	Cause and Effect Cause and effect relationships are routinely identified and used to explain change. Connections to Engineering, Technology, and Applications of Science Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering. Influence of Engineering, Technology, and Science on Society and the Natural World

				needs and wants change, as do their demands for new and improved technologies.
Lesson 6: How can you use a renewable resource like wind to make energy with a wind turbine?	Disney music is played- https://www.youtube.co m/watch?v=HvvZ1TEQ RB8 Learners are asked to imagine they are trees in the woods and while the music plays, they need to pretend they are blowing in the wind. Questions asked: 1. How would a tree move in a gentle breeze? 2. How would the tree look like if it rains and the wind becomes strong? 3. How would the tree look like if there is a tornado?	Obtain and combine information from books and other reliable media to explain phenomena.	ESS3.A: Natural Resources Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not.	Connections to Engineering, Technology, and Applications of Science Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering. The Influence of Engineering, Technology, and Science on Society and the Natural World

Lesson 7: How can more energy be obtained from the best designs of wind turbines?	A video on wind power is played for students to view. <u>https://www.youtube.co</u> <u>m/watch?v=niZ_cvu9Ft</u> <u>§</u>	Obtain and combine information from books and other reliable media to explain phenomena.	ESS3.A: Natural Resources Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not.	Connections to Engineering, Technology, and Applications of Science Interdependence of Science, Engineering, and Technology Knowledge of relevant scientific concepts and research findings is important in engineering. Influence of Engineering, Technology, and Science on Society and the Natural World Over time, people's needs and wants change, as do their demands for new and improved
				new and improved technologies.

Lesson 5: Is it important to use renewable resources?

Lesson 5 Objective: By the end of this lesson, learners should be able to describe the differences between using renewable and nonrenewable resources for energy needs.

Engagement	Exploration	Explanation	Extension	Evaluation
The teacher will gather all learners on a mat and ask them a few question. 1. What happens when your favorite cereal runs out at home? 2. What do you do if your parent's car runs out of gas? Learner answers will vary. Teacher will inform the learners that today they will be reading a book by Dr. Seuss. Ask learners what are some of the books they have read that are written by Dr. Seuss. Read or present audio/video of <i>The</i>	The Teacher informs all that all learners will participate in an activity. The class will be divided into groups of 4. Materials Needed: Each group will need a bag with 16 pieces of popcorn, 4 paper towels, and a pencil and paper. Teacher will need the bag with leftover popcorn to replenish the used resources. Section 1:Renewable Resource Activity 1. Each team begins with 16 pieces of popcorn Each student	Teacher will discuss with learners: What did the students do in "using" the resource Waste that occurred (popcorn dropped on the floor) and, whether any thought was given to students coming afterwards. There were protests from other students using degraded quality of popcorn towards the end (everyone's hands were in it before, and it's been crushed into smaller, less desirable pieces).	The teacher goes over a A PowerPoint presentation on renewable and nonrenewable resources with all learners. The PPT is included in the lesson plan. It provides content information as follow up from the activity. Follow up questions are discussed with learners. Which resources would continue to be available no matter how much people used them? Under what	Independently learners will group the following as renewable or non - renewable resources. 1.A field of corn 2.Oil in the Arctic tundra 3.Coal in the Appalachian mountains 4.Sunshine 5.Trees in a forest 6.Tuna in the ocean 7.Sand on a beach 8.A breeze over the Texas plains 9.Water in a river
Lorax- by Dr. Seuss	must take at least 1	discussion.	renewable resource not	What did you learn from

https://www.youtube.co m/watch?v=r18SCHVs UX4 The Lorax speaks for the trees, which	piece of popcorn per round to survive, and may take as many as he/she likes.	"	be renewable?	the activity and information presented in the lesson?
everyone, everyone, everyone needs. In this read along story book for children, read aloud. Adults read more into this book than children, but every kid sees that	2. One student per team records the number of pieces each team member takes per round, and the number of pieces remaining for the team.			
the Once-ler regrets destroying in order to create. A great lesson can be learned with this book.	3.The resource is then "renewed" by half (if there are 8 remaining pieces after round 1, the teacher will add 4 more pieces to the bag for round 2).			
some questions about the book. 1. What is this book about? 2. What do you learn from this book? 3. Why are trees important for all?	4.6 rounds are played in this manner. The object of the game is to have the most pieces of popcorn per team member after the final round.			
A discussion is initiated based on these questions and the discussion leads to Renewable and Nonrenewable	At the end of the game, discuss different strategies used by teams: Some may not need the			

resources.	resource because they'll consume too much of the resource early on		
	Others may take one piece at a time and build up a store by the end		
	Others may take more throughout but will always keep enough in reserve to be sufficiently renewed		
	Section 2: Nonrenewable Resource Activity		
	1.Students each pick up a slip of paper from a bag (there are 4 "1 st generation", 6 "2 nd generation", 9 "3 rd generation," and 14 "4 th generation" slips)		
	2. Teacher goes to the front of the classroom with a bag of popcorn, and leads a brief discussion of what it means when one generation finds a resource and how future generations are affected		

by it. 3.1 st ge then ce as muc want b 2 nd gen then de follow genera	generation students come up and take uch popcorn as they back to their seats. eneration students to the same, ved by 3^{rd} and 4^{th} ations.		
---	---	--	--

STEM Connections:

Science: Renewable and Nonrenewable Resources

Technology: The use of renewable and nonrenewable resources by humans – where do these resources get used?

Engineering: The designs in place to promote the use of renewable and nonrenewable resources – oil in car; and trees for wood and paper

Mathematics: Analysis of what resources get used and what is left for future generations

Lesson 5

Is it important to use Renewable Resources?

1.1. What will you do today?

The Lorax by Dr. Seuss is read to you. You will answer the following questions about the book:

a. What is this book about?

b. What did you learn from this book?

c. Why are trees important?

d. What questions come to your mind?

1.2. Making Sense: You will participate in an <u>activity</u> about renewable resources using uncooked popcorn.

There will be four members in each group.

You will need: A bag with 16 pieces of unpopped popcorn, 4 paper towels, a pencil and paper.

Section 1: Renewable Resource Activity

- 1. Each team will begin with 16 pieces of popcorn. Each student must take at least 1 piece of popcorn per round to survive, and may take as many as he/she likes.
- 2. One student per team records the number of popcorn each team member takes per round, and the number of pieces remaining for the team.
- 3. The resource is then "renewed" by half (if there are 8 remaining pieces after round 1, the teacher will add 4 more pieces to the bag for round 2).
- 4. 6 rounds are played in this manner. The object of the game is to have the most pieces of popcorn per team member after the final round.

Discussion question:

What were some strategies your team used to conserve popcorns?

Section 2: Nonrenewable Resource Activity

- 1. You team will pick up a slip of paper from a bag (there are 4 "1st generation", 6 "2nd generation", 9 "3rd generation," and 14 "4th generation" slips.
- 2. You need to go to your teacher who is in the front of the classroom with a bag of popcorns.
- 3. Describe on the board what it means when one generation finds a resource and how future generations are affected by it.
- 4. 1st generation students will go up to the teacher and take as much popcorn as they want to and return to their seats. 2nd generation students then do the same, followed by 3rd and 4th generation students.
- 5. Describe what it means when one generation finds a resource and uses it up so that future generations are not able to use it.

2.1. Making Sense

You are to discuss in your group about how you used your popcorn.

2.2. What will you do?

You will discuss the following questions with your group first.

The questions you will answer are:

c. How did you use the resource?

d. How did you waste the resource?

3.1. Your teacher will provide some information via a presentation on renewable and nonrenewable resources.

3.2. What will you do? Follow up questions:

a. Which resource would continue to be available no matter how much people use it?

Explain.

b. Under what circumstances would a renewable resource not be renewable?

4.1. What did I learn?

Independently, you will group the following as renewable or non -renewable resources

1. A field of corn

- 2. Oil in the Arctic tundra
- 3. Coal in the Appalachian Mountains
- 4. Sunshine
- 5. Trees in a forest
- 6. Tuna in the ocean
- 7. Sand on a beach
- 8. A breeze over the Texas plains
- 9. Water in a river

Renewable Resources:

Nonrenewable Resources:

Lesson 6: **How can you use a renewable resource like wind to make energy with a wind turbine?**

Lesson 6 Objective: By the end of this lesson, learners should be able to use a wind turbine and demonstrate how wind could be used.

Engagement	Exploration	Explanation	Extension	Evaluation
Disney music is played-	Class discussion is initiated about the video based on the questions	Learners are divided up into groups and they are asked to discuss the	Learners make a wind powered boat.	Learners complete an assessment.
m/watch?v=HvvZ1TEQ <u>RB8</u>	asked in Engagement. What is the meaning of	following questions:	This extension provides another method of using wind to power a balloon	The following questions are answered in groups of two and handed to the
Learners are asked to imagine they are trees in	Energy?	Describe the attempts used to get the wind	boat.	teacher.
the woods while the music plays. They need	How is Energy obtained from a wind turbine?	turbine to lift an item to the group.	Items needed:	1. What happened to the plastic straw and the
to pretend they are			Tub of water	plastic egg when the air
blowing in the wind. As	Learners learn about	The teacher will select	Plastic Egg	from the balloon is
the questions are asked	how wind turbines	one member of each	Balloon	released?
all learners need to role	work. A section of	team to present their	Scotch Tape	
play to answer the	reading is assigned to all	descriptions to the class.		2. How did you know
question.	the groups from the	The description needs to	1. Blow up the balloon.	that power was created
	energy.gov website.	demonstrate how a wind	2. Tape one side of the	to move the paper-made
Questions asked:		turbine makes energy	balloon onto the wider	wind turbine?
	http://energy.gov/article	from wind.	part of the bottom of the	
1. How would a tree	s/how-wind-turbine-		egg as shown above	3. Explain how power
move in a gentle breeze?	works		(leaving room for the air	was used to move the
			to escape.)	balloon boat.

Dark work with the learners how with the learners how tormado?A. Explain how a wind turbine uses wind to provide it with energy. 4. Place the balloon with the egg boat pointed in the direction of the tub. S. What are your ideas about using wind to produce energy that does a task for us?Learners are asked what they know about the wind, wind turbine and energy.1. What is the principle on how wind turbines work?5. Have the learner release the balloon and watch what happens.What is wind? What is wind?2. How many blades do most wind turbines have?Examine and Discuss from the balloon created wind power which caused the egg to move in the water.What is energy? How are wind, wind turbine and energy related?3. What is the rotor?Caused the egg to move in the water.The answers to these questions are posted in an on line form in a popplet page that shared with the class.6. What does the Yaw drive do?Learners: Illustrate how the balloon filled boat moved.The teacher informs all that learners will be htp://popplet.com/app/# Aning their own balloon-straw wind turbine.Learners view another vide on how two children make a wind turbine.Learners with materials from a kit.	2 How would the tree	After the reading	3 Have your learner/s	
Item in the number of the wind becomes strong?In the durant wind wind turbines work. The questions for discussion follow.In the arres of the escape.In the arres of the escape.3. How would the trees look like if there is a tornado?1. What is the principle on how wind turbines4. Place the balloon with the egg boat pointed in the direction of the other end of the tub.5. What are your ideas about using wind to produce energy that does a task for us?Learners are asked what they know about the wind, wind turbines energy.2. How many blades do most wind turbines have?Examine and Discuss how the release of air from the balloon recated wind power which caused the egg to move in the water.What is a wind Urbine? What is energy?3. What is the rotor? have?Examine and Discuss how the release of air from the balloon created wind power which caused the egg to move in the water.The answers to these questions are posted in a no line form in a popplet page that is shared with the class.6. What does the Yaw drive do? The teacher posts in popplet for all to view.6. What does the Yaw drive do? The teacher informs all that learners will be haking their own baloon-straw wind that learners will be haking their own baloon-straw wind childer make a wind turbine.Learners view another video on how two children make a wind turbine.After posting all the work on the channel turbine.The balloen examinedFrom a kit.	look like if it rains and	The teacher discusses	hold onto the balloon so	4 Explain how a wind
and the decemberwind turbines boxmean denote and the decembermean denote and the december3. How would the trees look like if there is a tormado?follow.4. Place the balloon with the direction of the other produce energy that does a task for us?2. How would the trees tormado?1. What is the principle on how wind turbines5. Have the learner release the balloon and watch what happens. Examine and Discuss how the release of air form the balloon created wind turbines5. What are your ideas about using wind to produce energy that does a task for us?What is wind? What is a wind turbine?2. How many blades do most wind turbines have?Examine and Discuss how the release of air from the balloon created wind power which caused the egg to move in the water.5. Name the instruments that resures wind go' are powered by something like the air/wind.The answers to these questions are posted in an online form in a popplet page that is shared with the class.6. What does the Yaw drive do? The tacher informs all that learners will be hat learners will be that learners will be hate it with energing the tacher informs all that learners will be hate it with energing the class in the down that the down that the down the down that the transform the produce energy that does a task for us?The tacher informs all that learners will be hateper posting all the transform a baloon-straw wind turbine.Learners view another vide on how two children make a wind turbine with materials from a kit.After posting all	the wind becomes	with the learners how	that the air cannot	turbine uses wind to
Storig:With furthers questions for discussion follow.4. Place the balloon with the egg boat pointed in the direction of the other produce nergy that does a task for us?5. What are your ideas about using wind to produce nergy that does a task for us?3. How would the trees look like if there is a tormado?1. What is the principle on how wind turbines work?4. Place the balloon with the direction of the other release the balloon and watch what happens.5. What are your ideas about using wind to produce energy that does a task for us?Learners are asked what they know about the wind, wind turbine and energy.2. How many blades do most wind turbines have?Examine and Discuss how the release of air from the balloon created wind power which caused the egg to move in the water.5. What is the rotor?How are wind, wind turbine and energy related?4. What drives the generator?5. Name the instruments that measures wind speed and direction?The answers to these questions are posted in an online form in a popplet page that is shared with the class.6. What does the Yaw drive do?Learners: Illustrate how the balloon filled boat moved.The teacher informs all that learners will be making their own balloon-straw wind turbine.Learners view another video on how two children make a wind turbine.After posting all the worwer we the mernetic there.The balloon straw wind turbine.From a kit.	strong?	wind turbines work. The	escape	provide it with energy
3. How would the trees look like if there is a tormado?5. Have the learner the eige boat pointed in the direction of the other end of the tub.5. Have the learner produce energy that does a task for us?Learners are asked what they know about the wind, wind turbine and energy.1. What is the principle on how wind turbines work?5. Have the learner release the balloon and watch what happens.5. What are your ideas about using wind to produce energy that does a task for us?What is wind? What is wind?2. How many blades do most wind turbines have?Examine and Discuss how the release of air from the balloon created wind power which aused the egg to move in the water.S. What is the rotor?How are wind, wind turbine and energy related?4. What drives the generator?Discuss by talking about air/wind.The answers to these an online form in a popplet page that is shared with the class.6. What does the Yaw drive do?Learners: Illustrate how the balloon filled boat moved.The tacher posts in popplet for all to view.6. What does the Yaw drive do?Learners view another video on how two children make a wind turbine.Learners view another video on how two children make a wind turbine.After posting all the orwurne on the memory all the corwurne on the memory all the <b< td=""><td>suong.</td><td>questions for discussion</td><td>1 Place the balloon with</td><td>provide it with energy.</td></b<>	suong.	questions for discussion	1 Place the balloon with	provide it with energy.
ShiftingShiftingShiftingShifting1. What is the principle on how wind turbines1. What is the principle on the balloon and watch what happens.1. What is the principle on how wind turbines1. What is the principle principle wind power which1. What is the principle on how wind turbines1. What is the principle principle wind power which1. What is the principle principle turbine and energy1. What dives the generator?1. What dives the principle principle principle turbine and energy principle turbine and energy1. What dives the generator?1. What dives the principle <td>3 How would the trees</td> <td>follow</td> <td>the egg boot pointed in</td> <td>5 What are your ideas</td>	3 How would the trees	follow	the egg boot pointed in	5 What are your ideas
lock here in there is aI. What is the principle on how wind turbinesabout along wind to produce energy that does a task for us?Learners are asked what 	Jock like if there is a	ionow.	the direction of the other	shout using wind to
Initial of a constructionInitial of a constructionInitial of a constructionInitial of a constructionLearners are asked what they know about the wind, wind turbine and energy.work?release the balloon and watch what happens. Examine and Discuss how the release of air from the balloon created wind power which caused the egg to move in the water.does a task for us?What is wind? What is wind?have?from the balloon created wind power which caused the egg to move in the water.wind power which caused the egg to move in the water.What is energy? How are wind, wind turbine and energy related?3. What is the rotor?Discuss by talking about how various 'things that go' are powered by something like the air/wind.The answers to these questions are posted in an online form in a popplet page that is shared with the class.6. What does the Yaw the teacher posts in drive do?Learners: Illustrate how the balloon filled boat moved.http://popplet.com/app/# homeThe teacher informs all that learners wind shared with the class.Learners wind that learners wind that happens.Learners wind turbine.After posting all the reverse row the needballThe halloan etamwindchildren make a wind turbine.After posting all the reverse row the needballThe halloan etamwindAfter posting all the reverse row the needballThe halloan etamwind	tormada?	1 What is the principle	and of the tub	about using which to
Learners are asked what they know about the wind, wind turbine and energy. What is wind? What is wind? What is a nergy? What is energy? What is energy? What is energy? What is energy? The answers to these questions are posted in an online form in a popplet page that is shared with the class. The teacher posts in popplet for all to view. The teacher informs all that learners wild be http://popplet.com/app/# After posting all the curverser as the nerged the subscreek to the subsc	tornado?	1. what is the principle	5 Have the learner	doos a task for us?
LearnersThe teacher posts in popplet for all to view.Kork?The teacher posts in popplet for all to view.The teacher posting all the turbine.Format all watch what happens. Examine and Discuss how the release of air from the balloon created wind power which caused the egg to move in the water. Discuss by talking about how various 'things that go' are powered by something like the air/wind.The answers to these questions are posted in han online form in a popplet page that is5. Name the instruments that descent evaluationLearners: Illustrate how the balloon filled boat moved.The teacher posting all the formeThe kalloon straw wind turbine.Learners view another video on how two children make a wind turbine with materials from a kit.	Learners are ested what	und turbines	5. Have the helloop and	uoes a task for us?
they know about the wind, wind turbine and energy.2. How many blades do most wind turbines have?Wat is wind Discuss how the release of air from the balloon created wind power which caused the egg to move in the water.What is a wind turbine?3. What is the rotor?caused the egg to move in the water.What is energy?3. What is the rotor?caused the egg to move in the water.How are wind, wind turbine and energy related?4. What drives the generator?Discuss by talking about how various 'things that go' are powered by something like the air/wind.The answers to these questions are posted in an online form in a popplet page that is shared with the class.5. Name the instruments that does the YawLearners: Illustrate how the balloon filled boat moved.The teacher posts in popplet for all to view.The teacher informs all that learners wind that learners wind turbine.After posting all the rememberThe hole on straw wind turbine.After posting all the rememberThe hole on straw wind turbine.	the set by a set the	WOIK ?	release the balloon and	
Wind, wind turbine and energy.2. How many blades do most wind turbinesExamine and Discuss how the release of air from the balloon createdWhat is wind?have?from the balloon createdWhat is a wind turbine?wind power which caused the egg to move in the water.What is energy?3. What is the rotor?How are wind, wind turbine and energy related?4. What drives the generator?The answers to these questions are posted in an online form in a popplet page that is shared with the class.5. Name the instruments that measures wind speed and direction?The tacher posts in popplet for all to view.6. What does the Yaw that learners will be that learners will be that learners will beLearners view another video on how two children make a wind turbine.After posting all the encourse on the scendetThe balloon straw wind turbine.From a kit.	they know about the		Francisco en l Diserre	
energy.most wind turbinesnow the release of airWhat is wind?have?from the balloon createdWhat is a wind turbine?wind power whichWhat is energy?3. What is the rotor?caused the egg to moveHow are wind, windin the water.turbine and energy4. What drives the generator?Discuss by talking about how various 'things that go' are powered byThe answers to these5. Name the instruments that measures wind speed and direction?something like the air/wind.popplet page that is shared with the class.6. What does the Yaw drive do?Learners: Illustrate how moved.that learners will be that learners will be that learners will beLearners view another wideo on how two children make a wind turbine.http://popplet.com/app/# homemaking their own balloon-straw wind turbine.children make a wind turbine with materials from a kit.	wind, wind turbine and	2. How many blades do	Examine and Discuss	
What is wind?have?from the balloon createdWhat is a wind turbine?3. What is the rotor?wind power whichWhat is energy?3. What is the rotor?caused the egg to moveHow are wind, windin the water.Discuss by talking aboutHow are wind, windenergy4. What drives theDiscuss by talking aboutrelated?generator?bow various 'things thatquestions are posted inan online form in aspeed and direction?popplet page that is6. What does the YawLearners: Illustrate howthat learners will bethat learners wind direction?moved.popplet for all to view.The teacher informs all that learners windLearners view anotherhttp://popplet.com/app/#making their ownvideo on how twoAfter posting all theThe balloon straw windchildren make a windAfter posting all theThe balloon straw windchildren make a wind	energy.	most wind turbines	how the release of air	
What is a wind turbine?So what is the rotor?Wind power whichWhat is energy?3. What is the rotor?caused the egg to move in the water.How are wind, wind4. What drives the generator?Discuss by talking about how various 'things that go' are powered byThe answers to these questions are posted in an online form in a speed and direction?5. Name the instruments speed and direction?something like the air/wind.popplet page that is shared with the class.6. What does the Yaw the teacher informs all that learners will beLearners view another wideo on how two children make a wind turbine.http://popplet.com/app/# /homemaking their own balloon-straw wind turbine.Learners with materials from a kit.	What is wind?	have?	from the balloon created	
What is energy?3. What is the rotor?caused the egg to move in the water.How are wind, wind turbine and energy4. What drives the generator?Discuss by talking about how various 'things that go' are powered byThe answers to these questions are posted in an online form in a speed and direction?5. Name the instruments speed and direction?something like the air/wind.popplet page that is shared with the class.6. What does the YawLearners: Illustrate how moved.The teacher posts in popplet for all to view.The teacher informs all that learners will beLearners view another video on how two children make a wind turbine.After posting all the aresume son the posted all the resumers on the posted all theThe halloon straw wind turbine.from a kit.	What is a wind turbine?		wind power which	
How are wind, wind turbine and energy related?4. What drives the generator?in the water. Discuss by talking about how various 'things that go' are powered by something like the air/wind.The answers to these questions are posted in an online form in a speed and direction?5. Name the instruments that measures wind speed and direction?something like the air/wind.popplet page that is shared with the class.6. What does the Yaw drive do?Learners: Illustrate how moved.the tacher posts in popplet for all to view.The teacher informs all that learners will be balloon-straw wind turbine.Learners view another video on how two children make a wind turbine.After posting all the aresures on the apprendictThe balloon straw wind turbine.children make a wind turbine.	What is energy?	3. What is the rotor?	caused the egg to move	
turbine and energy related?4. What drives the generator?Discuss by talking about how various 'things that go' are powered by something like the air/wind.The answers to these questions are posted in an online form in a popplet page that is shared with the class.5. Name the instruments that measures wind speed and direction?biscuss by talking about how various 'things that go' are powered by something like the air/wind.The tacher posts in popplet for all to view.6. What does the Yaw drive do?Learners: Illustrate how moved.http://popplet.com/app/# /homeThe teacher informs all that learners will be balloon-straw wind turbine.Learners view another video on how two children make a wind turbine with materialsAfter posting all the ensource on the normalityThe balloon straw wind turbine.from a kit.	How are wind, wind		in the water.	
related?generator?how various 'things that go' are powered by something like the air/wind.The answers to these questions are posted in an online form in a popplet page that is shared with the class.5. Name the instruments that measures wind speed and direction?something like the air/wind.popplet page that is shared with the class.6. What does the Yaw drive do?Learners: Illustrate how the balloon filled boat moved.The teacher posts in popplet for all to view.The teacher informs all that learners will be balloon-straw wind turbine.Learners view another video on how two children make a wind turbine.After posting all the ensurement on the pomplet.The halloon strew wind turbine.from a kit.	turbine and energy	4. What drives the	Discuss by talking about	
The answers to these questions are posted in an online form in a popplet page that is shared with the class.5. Name the instruments that measures wind speed and direction?go' are powered by something like the air/wind.Dopplet page that is shared with the class.6. What does the Yaw drive do?Learners: Illustrate how the balloon filled boat moved.The teacher posts in popplet for all to view.6. What does the Yaw drive do?Learners view another video on how two children make a wind turbine.http://popplet.com/app/# /homemaking their own balloon-straw wind turbine.Learners view another video on how two children make a wind turbine with materials from a kit.	related?	generator?	how various 'things that	
The answers to these questions are posted in an online form in a popplet page that is shared with the class.5. Name the instruments that measures wind speed and direction?something like the air/wind.by Deplet page that is shared with the class.6. What does the Yaw drive do?Learners: Illustrate how the balloon filled boat moved.The teacher posts in popplet for all to view.6. What does the Yaw drive do?Learners view another video on how two children make a wind turbine.http://popplet.com/app/# /homemaking their own balloon-straw wind turbine.Learners view another video on how two children make a wind turbine with materials from a kit.			go' are powered by	
questions are posted in an online form in a popplet page that isthat measures wind speed and direction?air/wind.popplet page that is shared with the class.6. What does the Yaw drive do?Learners: Illustrate how the balloon filled boat moved.The teacher posts in popplet for all to view.6. What does the Yaw drive do?Learners view another video on how two children make a wind turbine.http://popplet.com/app/# /homeballoon-straw wind turbine.Learners view another video on how two children make a wind turbine with materials from a kit.	The answers to these	5. Name the instruments	something like the	
an online form in a popplet page that isspeed and direction?Learners: Illustrate how the balloon filled boat moved.shared with the class.6. What does the YawLearners: Illustrate how the balloon filled boat moved.The teacher posts in popplet for all to view.The teacher informs all that learners will beLearners view another video on how two children make a wind turbine.http://popplet.com/app/# /homemaking their own balloon-straw wind turbine.Learners view another video on how two children make a wind turbine with materialsAfter posting all theThe balloon atmu windfrom a kit.	questions are posted in	that measures wind	air/wind.	
popplet page that is shared with the class.6. What does the Yaw drive do?Learners: Illustrate how the balloon filled boat moved.The teacher posts in popplet for all to view.G. What does the Yaw drive do?moved.The teacher informs all that learners will be making their own balloon-straw wind turbine.Learners view another video on how two children make a wind turbine with materials from a kit.	an online form in a	speed and direction?		
shared with the class.6. What does the Yaw drive do?the balloon filled boat moved.The teacher posts in popplet for all to view.The teacher informs all that learners will be making their own balloon-straw wind turbine.Learners view another video on how two children make a wind turbine with materials from a kit.	popplet page that is		Learners: Illustrate how	
The teacher posts in popplet for all to view.drive do?moved.The teacher informs all that learners will beLearners view anotherhttp://popplet.com/app/# /homemaking their ownLearners view anotherballoon-straw wind turbine.children make a windAfter posting all the orsumer on the normalityThe helloon straw wind	shared with the class.	6. What does the Yaw	the balloon filled boat	
popplet for all to view.The teacher informs all that learners will beLearners view another making their own balloon-straw wind turbine.Learners view anotherAfter posting all the<a href="http://popplet.com/applet.co</td> <td>The teacher posts in</td> <td>drive do?</td> <td>moved.</td> <td></td>	The teacher posts in	drive do?	moved.	
http://popplet.com/app/# that learners will be making their own balloon-straw wind turbine. Learners view another video on how two children make a wind turbine with materials from a kit.	popplet for all to view.	The teacher informs all		
http://popplet.com/app/# /homemaking their own balloon-straw wind turbine.video on how two children make a wind turbine with materials from a kit.		that learners will be	Learners view another	
/home balloon-straw wind turbine. children make a wind turbine with materials from a kit.	http://popplet.com/app/#	making their own	video on how two	
After posting all the answers on the normality The belloop strew wind.	/home	balloon-straw wind	children make a wind	
After posting all the from a kit.		turbine.	turbine with materials	
answers on the nonplet. The holloop strong wind	After posting all the		from a kit.	
answers on the popplet [The balloon-straw wind]	answers on the popplet	The balloon-straw wind		

page, learners view the video from youtube about WIND POWER	turbine created will be used to see how long it moves.	https://www.youtube.co m/watch?v=BNPpvQQI KoE	
https://www.youtube.co m/watch?v=niZ_cvu9Ft § The phenomenon from youtube video is discussed by the teacher with the students.	https://www.youtube.co m/watch?v=hB8Wv_iHr d8		

STEM Connections:

Science: How wind is used by humans

Technology: Manipulating a wind turbine to lift an item

Engineering: Designing a wind powered boat using a balloon and a plastic egg

Mathematics: Qualitatively describe the use of wind for simple work like lifting an item and powering a boat

Lesson 6

How can you use a renewable resource like WIND to make energy with a wind turbine?

1.1. What will you do today?

Listen to the Music from "Colors of the Wind" from Pocahontas. You will role play the answer as the teacher reads the questions.

- **a.** How would trees move in a gentle breeze?
- **b.** How would trees look when it rains and the wind is strong?
- **c.** How would trees look if there is a tornado?

1.2. *Making Sense:* You are placed in groups of two. You are provided with an iPad or a device. You need to go to a popplet page at http://popplet.com in your group. The popplet page has been preset for your group at the site provided on the board. Your group needs to answer the following questions in the popplet site page. The answers you provide are based on your own knowledge and discussion with your peer group. You do not need to look for answers in a text.

- a. What is wind?
- b. What is a wind turbine?
- c. What is energy?
- d. How are wind, wind turbine and energy related?

After writing the answers to the questions listed above, view the video at this site:

https://www.youtube.com/watch?v=niZ_cvu9Fts

After viewing the video, you will write on the popplet page you used earlier to modify your answers you have written.

- 3. Modify your answers you wrote in popplet.
- 4. Write QUESTIONS that come to your mind when you viewed the video.

2.1. A reading is assigned to you from a site. You and your peer group need to read and view the site independently. The site is listed below.

http://energy.gov/articles/how-wind-turbine-works

After the reading, your peer group will answer the following questions listed in 2.2.

2.2. What will you do?

a. You will discuss the following questions with your group.

The questions you will discuss are:

- e. What is the principal on how wind turbines work?
- f. How many blades do most wind turbines have?
- g. What is a rotor?
- h. What drives the generator?
- i. Name the instruments that measure wind speed and wind direction?
- j. What does the Yaw drive do?

After the discussion and writing of answers, your teacher will discuss the questions with the class. You can modify the answers if you think the answers needed more information.

3.1. What will you do next?

After the discussion with the teacher, you will construct your own balloon- straw wind turbine after viewing the video listed below.

https://www.youtube.com/watch?v=hB8Wv_iHrd8

You are provided with:

- a. Three different sizes of balloons
- b. Three straws
- c. Tape
- d. Pencil with an eraser at the end
- e. A nail or thumb tac

Construct the balloon-straw wind turbine and see which one works the best from the ones you made.

3.2. One member of your group will present the best balloon- straw wind turbine and explain why it worked the best.

Sketch:

Explain:

4.1. Making Sense: Make another WIND powered boat

How you will make the boat?

The materials provided to you are:

- a. Tub of water
- b. Plastic Egg
- c. Balloon
- d. Scotch Tape

Directions:

- 1. Blow up the balloon.
- 2. Tape one side of the balloon onto the wider part of the bottom of the egg as shown above (leaving room for the air to escape).
- 3. You will hold onto the balloon so that the air cannot escape.
- 4. Place the balloon with the egg boat pointed in the direction of the other end of the tub.
- 5. You will release the balloon and watch what happens.

Show and tell your teacher and your peers what you saw happen.

The teacher will discuss with your class the following questions:

- 1. How did the release of air from the balloon created wind power caused the egg to move in the water?
- 2. What are some 'things that go' that are powered by something like the air/wind?

4.2. You will view another video with your peer group. The site is listed below.

https://www.youtube.com/watch?v=BNPpvQQIKoE

This video is to inform you how wind turbines may be constructed with a kit.

5.1. What did I learn?

Answer the following questions:

c. What happened to the plastic straw and the plastic egg when the air from the balloon is released?

d. How did you know that power was created to move the paper-made wind turbine?

e. Explain how power was used to move the balloon boat.

f. What are your ideas about using wind to produce energy that is used to do a task for us?

Lesson 7: How can more energy be obtained from the best designs of wind turbines?

Lesson 7 Objective: By the end of this lesson, learners should be able to examine different wind turbine designs and discuss which design is able to harvest wind to the maximum.

Engagement	Exploration	Explanation	Extension	Evaluation
The teacher investigates	Learners explore two	Learners illustrate the	Observe the turbines	Learners will be asked
learners' previous	designs of wind	exploration. Learners	built by others in your	to write their
knowledge about what	turbines. The kind of	are grouped in 2's. They	group. How are they	independent responses
caused the balloon-straw	wind turbine they used	describe to their peers.	similar? How do they	on the board for the
pinwheel, and	with ideas from the site		differ? What are some	questions listed below.
balloon/plastic egg to	listed below is explored	1. What variables are	features of the turbines	1. What improvements
move and other	with their own ideas.	used in this experiment?	that lift the most	did you make in your
questions are asked.			pennies?	initial pinwheel design
	https://www.youtube.co	2. Which variable was	We need energy to do	for a wind turbine?
1. What caused the	m/watch?v=ZGmMkMk	changed and why while	work. Moving or lifting	
voltmeter needed to	<u>Q_gc</u>	conducting the	something is work.	2. What allows the
move when using a		experiment?	Lifting 4 pennies 20	pinwheel to lift most
paper-made wind	The following materials		inches is twice as much	pennies?
turbine?	are used for this activity.	4. Why is more speed	work as lifting 4 pennies	
		important for a wind	10 inches. Describe	3. What new ideas did
2. How did the air filled	How can we use a	turbine?	how your turbine uses	you develop about a
balloon cause the plastic	pinwheel to lift pennies?		wind energy to do work.	wind turbine?
egg boat to move?				
	Materials:			4. Describe how your
The learners are shown	Pennies, pinwheel			wind turbine uses wind
several images of wind	pattern on cardstock,			energy to do work.
turbines.	round pencils with			

http://energy.gov/energy saver/small-wind- electric-systems	erasers, string (cotton or poly works best), paper or plastic cups, paper clips, tape, box fan, stopwatch or watch with a second hand. Describe all attempts:		
	 What is the maximum number of pennies your machine is able to lift? How long does it take your machine to lift four pennies? How long does it take to lift eight pennies? Is it twice as long? 		
	Describe your first design.		
	what works well? What do you want to improve? Describe all designs you used and how well each worked.		

STEM Connections:

Science: Workings of Wind turbines

Technology: Different types of wind turbines

Engineering: Designing a pinwheel

Mathematics: Qualitatively demonstrating the working of a pinwheel to show impact of wind.

Lesson 7

How can more energy be obtained from the best designs of wind turbines?

1.1. What will you do today?

Answer the following questions:

- d. What permitted the balloon-straw pinwheel/ and plastic egg made wind turbines to move?
- e. What caused the voltmeter needed to move when using a paper-made wind turbine?
- **f.** How did the air filled balloon cause the plastic egg boat to move?

You will observe this video:

http://energy.gov/energysaver/small-wind-electric-systems

1.2. Making Sense:

You are placed in groups of two.

1. You will explore the site listed below:

https://www.youtube.com/watch?v=ZGmMkMkQ_gc

2. Materials you will need:

- 1. Pennies
- 2. Pinwheel pattern on cardstock,
- 3. Round pencils with erasers,

4. String (cotton or poly works best),
 5. Paper or plastic cups,
 6. Paper clips,
 7. Tape,
 8. Box fan or hair dryer,
 9. Stopwatch or watch with a second hand.

What is the question you want to explore?

Question: _____

Name one variable you will change in the investigation:

Name the other variable that will not change in the investigation:

2.1. What you will do next: Test your designs and record your observations.

An observation Table is provided for you to complete as you complete the task.

Observation Table:

	Number of Pennies	Design of pinwheel used	Number of Twirls in 30 seconds	Did you try this indoors/outdoors?
Design 1				
Design 2				
Design 3				

2.2. What did you find out?

a. You will discuss the following questions with your group.

The questions you will discuss are:

- 1. What variables are used in this investigation?
- 2. Which variable was changed while conducting the experiment, and why?
- 3. What kind of pinwheel was able to lift the most pennies?
- 4. Why is more speed important for a wind turbine?

After the discussion and writing of answers, your teacher will discuss the question with the class. You can modify the answers if you think the answers needed more information.

3.1. What will you do next?

You will explain to your teacher what your group did and what the findings were.

1. Describe to your teacher what you were able to find out with this investigation.

4.1. Making Sense: Observe other presentations.

Observe the turbines built by others in your group.

How are they similar?

How do they differ?

What are some features of the turbines that lift the most pennies?

4.3 Making Sense:

We need energy to do work. Moving or lifting something is work. Lifting 4 pennies 20 inches is twice as much work as lifting 4 pennies 10 inches.

Describe how your turbine uses wind energy to do work.

5.1. What did I learn?

Answer the following questions:

g. What improvements did you make in your initial pinwheel design for a wind turbine?

h. What allows the pinwheel to lift most pennies?

- i. What new ideas did you develop about a wind turbine?
- j. Describe how your wind turbine uses wind energy to do work.

Subject/Grade (DCI): <u>Science/Earth Science/6-8</u> (Human Impacts on earth systems, DCI). Big Idea Statement: Human Impacts in Earth Systems:

NGSS Standard: How Earth and Human Activity can minimize impact on the Environment?

MS-ESS3-3: Performance Expectation

Students who demonstrate understanding can:

(6-8) MS-ESS3-3: Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment (Clarification Statement: Examples of the design process include examining human impacts can include water usage (such as the withdrawal of water from streams; land use, and pollution of air, water or land).

Specific DCI: Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise

Connections to other DCIs in this grade-band:

MS.PS1.A (MS-ESS3-1); MS.PS1.B (MS-ESS3-1); MS.PS3.A (MS-ESS3-5); MS.PS3.C (MS-ESS3-2); MS.LS2.A (MS-ESS3-3), (MS-ESS3-4); MS.LS2.C (MS-ESS3-3), MS.LS4.D (MS-ESS3-3), (MS-ESS3-4); MS.ESS2.D (MS-ESS3-1)

Articulation of DCIs across grade-bands

3.LS2.C (MS-ESS3-3),(MS-ESS3-4); 3.LS4.D (MS-ESS3-3),(MS-ESS3-4); 3.ESS3.B (MS-ESS3-2); 4.PS3.D (MS-ESS3-1); 4.ESS3.A (MS-ESS3-1); 4.ESS3.B (MS-ESS3-2); 5.ESS3.C (MS-ESS3-3),(MS-ESS3-4); HS.PS3.B (MS-ESS3-1),(MS-ESS3-5); HS.PS4.B (MS-ESS3-5); HS.LS1.C (MS-ESS3-1); HS.LS2.A (MS-ESS3-4); HS.LS2.C (MS-ESS3-3),(MS-ESS3-4); HS.LS4.C (MS-ESS3-3),(MS-ESS3-4); HS.LS4.D (MS-ESS3-3),(MS-ESS3-4); HS.ESS2.A (MS-ESS3-1),(MS-ESS3-5); HS.ESS2.B (MS-ESS3-1),(MS-ESS3-2); HS.ESS2.C (MS-ESS3-1),(MS-ESS3-3); HS.ESS2.D (MS-ESS3-2),(MS-ESS3-3),(MS-ESS3-5); HS.ESS2.E (MS-ESS3-3),(MS-ESS3-4); HS.ESS3.A (MS-ESS3-1),(MS-ESS3-4); HS.ESS3.B (MS-ESS3-2); HS.ESS3.C (MS-ESS3-3),(MS-ESS3-4); 4),(MS-ESS3-5); HS.ESS3.D (MS-ESS3-2);(MS-ESS3-3),(MS-ESS3-5);

Common Core State Standards Connections:

ELA/Literacy -

RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts. (MS-ESS3-1), (MS-ESS3-2),(MS-ESS3-4),(MS-ESS3-5)

RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-ESS3-2)

WHST.6-8.1 Write arguments focused on discipline content. (MS-ESS3-4)

WHST.6-8.2 Write informative/explanatory texts to examine a topic and convey ideas, concepts, and information through the selection, organization, and analysis of relevant content. (MS-ESS3-1)

WHST.6-8.7 Conduct short research projects to answer a question (including a self-generated question), drawing on several

sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-ESS3-3) WHST.6-8.8 Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation. (MS-ESS3-3)

WHST.6-8.9 Draw evidence from informational texts to support analysis, reflection, and research. (MS-ESS3-1), (MS-ESS3-4) **Mathematics** -

MP.2 Reason abstractly and quantitatively. (MS-ESS3-2), (MS-ESS3-5)

6. RP.A.1 Understand the concept of a ratio and use ratio language to describe a ratio relationship between two quantities. (MS-ESS3-3), (MS-ESS3-4)

7. RP.A.2 Recognize and represent proportional relationships between quantities. (MS-ESS3-3), (MS-ESS3-4)

6.EE.B.6 Use variables to represent numbers and write expressions when solving a real-world or mathematical problem; understand that a variable can represent an unknown number, or, depending on the purpose at hand, any number in a specified set. (MS-ESS3-1), (MS-ESS3-2), (MS-ESS3-3), (MS-ESS3-4), (MS-ESS3-5)

7. EE.B.4Use variables to represent quantities in a real-world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities. (MS-ESS3-1), (MS-ESS3-2), (MS-ESS3-3), (MS-ESS3-4), (MS-ESS3-5)
Storyline 6-8

Question	Phenomena	Engineering and Scientific	Disciplinary Core	Cross Cutting
		Practice(s)	Idea (DCI)	Concepts
			What we figured	(CCC)
			out.	
8. How can a	Learners view a video on	Apply scientific principles to	Typically as human	Connections to
better design of	paper plane designs and	design an object, tool, process	populations and per-	Engineering,
a wind turbine	which flies the faster and	or system.	capita consumption	Technology, and
blade be	farthest.		of natural resources	Applications of
investigated?	https://www.youtube.com/wa		increase, so do the	Science
	tch?v=-AZOcCdmEo4		negative impacts on	
			Earth unless the	Influence of
	Ask learners to make 3		activities and	Science,
	different types of paper		technologies involved	Engineering, and
	planes and test their design.		are engineered	Technology on
	The purpose is to find out		otherwise.	Society and the
	which paper plane goes the			Natural World
	furthest. This phenomena			The uses of
	will link to a previous			technologies and any
	experience the learners may			limitations on their
	have had when they were			use are driven by
	much younger. Learners are			individual or societal
	asked - what did they			needs, desires, and
	consider when designing a			values; by the
	paper plane?			findings of scientific
				research; and by
				differences in such
				factors as climate,
				natural resources,
				and economic
				conditions. Thus

9. How can human impact on the environment be reduced by using a wind turbine?	Learners view this video on youtube titled: Are you REALLY saving the ENVIRONMENT investing in a wind farm or a solar plant? <u>https://www.youtube.com/wa</u> tch?v=Ah5tM4kw9To	Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 6–8 builds on K–5 experiences and progresses to include constructing explanations and designing solutions supported by multiple sources of evidence consistent with scientific ideas, principles, and theories.	Human Impacts on Earth Systems Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth's environments can have different	technology use varies from region to region and over time. Cause and Effect: Relationships can be classified as causal or correlational, and correlation does not necessarily imply causation. Cause and Effect Relationships can be classified as causal or correlational, and correlation does not necessarily imply causation.
			have different impacts (negative and positive) for different	
			living things.	
10. How does it	Learners view this video on	Apply scientific principles to	Typically as human	Connections to
compare when	Wind Power vs. Coal Power.	design an object, tool, process	populations and per-	Engineering,
energy is	They are asked to indicate	or system.	capita consumption	Technology, and
produced by a	what they choose and why.		of natural resources	Applications of
wind turbine or			increase, so do the	Science
with burning	What questions emerge?		negative impacts on	

coal?		Earth unless the	Influence of
	https://www.youtube.com/wa	activities and	Science,
	tch?v=H65Co1W_BCQ	technologies involved	Engineering, and
		are engineered	Technology on
		otherwise.	Society and the
			Natural World
			The uses of
			technologies and any
			limitations on their
			use are driven by
			individual or societal
			needs, desires, and
			values; by the
			findings of scientific
			research; and by
			differences in such
			factors as climate,
			natural resources,
			and economic
			conditions. Thus
			technology use
			varies from region to
			region and over
			time.
			Cause and Effect:
			Relationships can be
			classified as causal
			or correlational, and
			correlation does not
			necessarily imply
			causation.

Lesson 8: How can a better design of a wind turbine blade be investigated?

Lesson 8 Objective: By the end of this lesson, learners should be able to examine different wind turbine blades and indicate which blade design is better for harvesting wind to produce power.

Engagement	Exploration	Explanation	Extension	Evaluation
Learners view a video on paper plane designs and which flies the faster and farthest. <u>https://www.youtube.co</u> <u>m/watch?v=-</u> AZOcCdmEo4	Translating the significance of better design with paper planes, learners will view a video on wind turbine blade design for production of more	Learners illustrate the exploration. Learners are grouped in 3's. They describe to their peers: 1. The variables used in the exploration	Learners construct a graph for the data obtained in Exploration of Power Production in wattage on the vertical axis and variable tested on the horizontal axis	Learners complete the "L" part in the KWL chart and talk about the new learning from the investigation.
The teacher investigates learners' previous knowledge about paper planes.	electricity. <u>https://www.youtube.co</u> <u>m/watch?v=vkd50JWyo</u> <u>i4</u>	2. Which variable was changed and why while conducting the experiment?	The graph displayed needs to document each variable for blade tested with a different color.	illustrate and describe their findings from the investigation by answering the question about how could a better
Ask learners to make 3 different types of paper planes and test their design. The purpose is	students to indicate their learning from the video.	3. Which design produced the most power for the turbine?4. Why is more power	the issues they encountered with each variable.	blade be investigated and a determination be recommended.
b find out which paper plane goes the furthest. This phenomena will link to a previous experience the learners may have had when they were much younger.	from U.S. Department of Energy: Energy Education Different Wind Turbine	4. why is more power important for a wind turbine?5. How did the voltage/amperage/watta ge change as a result of	what could be done differently when conducting such an investigation.	

Learners are asked -	Blades kits will be	change in variable?	An optional question	
what did they consider	obtained for classroom		could be explored by	
when designing a paper	use from -	6 What kind of effect	learners for extra credit	
plane	http://www.kidwind.org/	does the variable change		
plane	or Windpower org and	have on power	Power in WIND	
The learners are asked.	Renewable Energy	production?	Power (W) –	
Which paper design	Canada	production:	Voltage(V) \sim (Δ)	
worked the best and	Canada.		Voltage(V) Current (A)	
why?	A model wind turbine		Record Amps not	
wity:	can be set up in the		milliamps	
A discussion follows	classroom for learners to		$1 \Lambda = 1.000 \text{ m} \Lambda$	
whore learners are	avplora L aprogramav		1A – 1,000 mA	
invited to write	be asked questions		L compare are asked to	
invited to write	about a wind turbing as		manipulate data in this	
design for greater	they explore the model		formula to determine:	
distance covered on the	L corpore are informed		which is the most	
hoord	that they will explore		important variable to	
board.	that they will explore		important variable to	
The learner greations	blades of a wind turbine.		obtain the maximum	
The learner questions	T		power from wind?	
are discussed.	Learners are asked			
	about the question they			
The teacher informs the	would like to explore			
learners that they will be	relating to turbine			
designing three different	blades.			
wind turbine blades and				
determining which kind	The variables the			
of blade is better.	learners could consider			
	tor a turbine blade are:			
Learners start a KWL	Length; Number,			
sheet with information	Material; Shape,			
about wind turbine	Curvature of blade;			
blades.	Weight; angle of blade.			

Materials Needed:		
-2-3 Box fans		
-Images of large turbines		
-Blade construction materials Learners will submit a investigation question and plan related to blades.		
There will be 3 learners per group.		
A data table with the following will be provided to each group for calculation of power. For three trials per variable the following items need to be listed in the data table		
Variable		
Voltage V		
Ampere A.		

V * A = Power (Watts)		

STEM Connections

Science: Factors effecting the harvesting of wind

Technology: Wind turbine blades

Engineering: Design of wind turbine blades

Mathematics: The impact of multiple variables and quantitative analysis of turbine blades vs maximum generation of electricity

Lesson 8

How can a better design of a wind turbine blade be investigated?

1.1. What will you do today?

View the video at the location listed below.

https://www.youtube.com/watch?v=-AZOcCdmEo4

After you view the video, you and a partner will make three different designs of a paper plane.

Test the three designs to find out which paper plane goes the furthest.

Predict which design works the best:

Designs	Design Illustration	Distance 1	Distance 2	Distance 3
Design 1				
Design 2				
Design 3				

Which Paper design went the furthest? Illustrate the design.

Why do you think this design worked the best?

1.2. Making Sense:

You are placed in a group of two with your peers. a. You will explore the site listed below:

https://www.youtube.com/watch?v=RNPIRfxUTQ4

What did you learn from viewing the video?

2.1. What you will do next: A model wind turbine is set up in the classroom. You will be provided with materials. In your pairs, decide which question relating to wind turbine blades you would like to explore.

Get approval from your teacher regarding your exploration question.

Wind Turbine Blade Design Question:

2.2. Test your designs and record your observations. There are several variables you could consider for your exploration- length of blade; number of blades; shape of Blade; curvature of blade; angle of blade

Name the variables you would like to consider for your exploration.

1._____

2._____

3.

Materials you are provided:

- 1. 2-3 Box fans
- 2. Images of large turbines
- 3. Blade construction materials

An observation table is provided for you to complete as you complete the task.

	Variable	Voltage (V)	Ampere (A)	Power = V* A (Watts)
Design 1				
Design 2				
Design 3				

Observation Table:

2.2. What did you find out?

a. You will discuss the following questions with your group.

The questions you will discuss are:

5. Which variables are used in this investigation?

6. Which variable was changed while conducting the experiment, and why?

7. What kind of Turbine Design was able to produce the most power (P)?

8. Why is more power important for a wind turbine?

9. How did the Voltage, Amperage, Power change as result of change in variable/s?

After you discuss the answers with your partner, your teacher will discuss the question with the class. You can modify the answers if you think the answers needed more information.

3.1. What will you do next?

You will construct a graph for the data you listed in the observation table. Power output vs design needs to be displayed on the graph.

3.2. Analyze the graph:

1. Describe what information is displayed by the graph.

2. What could be done differently when conducting such an investigation?

4.1. Making Sense: Optional Question

Which is the most important variable to obtain the most power from wind, and why?

a. What did I learn?

Answer the following questions:

k. Describe your findings from the investigation.

1. What did you learn from this investigation?

m. What new ideas did you develop about a wind turbine?

Lesson 9: How can human impact on the environment be reduced by using a wind turbine?

Lesson 9 Objective: By the end of this lesson, learners should be able to demonstrate how impact on the environment could be reduced by using a wind turbine for energy production

Engagement	Exploration	Explanation	Extension	Evaluation
Engagement Learners view this video on youtube titled: Are you REALLY saving the ENVIRONMENT investing in a wind farm or a solar plant? <u>https://www.youtube.co</u> <u>m/watch?v=Ah5tM4kw</u> <u>9To</u>	ExplorationLearners explore Energy.gov sitehttp://energy.gov/eere/w ind/advantages-and- challenges-wind-energyLearners are divided into groups to explore the advantages and challenges of using a wind turbine for harvesting wind to produce electrical energy.Each group will have three membersCrawn 1: Evalore	Explanation After the exploration, learners will provide a presentation of their discoveries related to the questions for each group. The groups will present their popplet and descriptions.	Extension Peers will be provided an opportunity to open one more popplet and comment and elaborate on their peer work. The peers mention one positive and one suggestion listed on one question in the popplet. Wherever possible, cite source. After peer review, there is a discussion led by the teacher what each group added to another group's work on popplet and explain their reasoning for adding	Evaluation A short exit quiz is conducted on the questions listed for all the groups. Advantages and Challenges of using wind power. How can wind power be profitable? Why can wind power have its challenges? How can those challenges be addressed? What are your ideas?
	Advantages of Wind Power Questions students will		that information based on experience or information they	

		1
explore and post information on popplet.com 1. What is the meaning of clean fuel source? 2.Examine and Describe	obtained from another source.	
the meaning of "Wind is a domestic source of Energy" 3. Explain how "Wind can be considered Sustainable".		
Group 2: Explore Advantages of Wind Power Questions students will explore and post information on popplet.com		
 How is "Wind Power Cost-Effective"? How effective is it when Wind Turbines are built on existing farms or ranches? How does wind power create jobs and improve the economy? 		
Group 3: Explore Challenges of Wind		

Power Questions students will explore and post information on popplet.com	
1. Explain with an example - How Wind Power must still compete with conventional generation sources on cost.	
2. Since more wind is existing in rural and less populated areas, how can this be a challenge?	
Group 4: Explore Challenges of Wind Power Questions students will explore and post information on popplet.com	
1. Elaborate on - Wind resource development might not be the most profitable use of land.	
2. Provide example/s on -Turbines have caused	

noise and aesthetic population.		
3. How could turbine blades damage local wildlife?		

STEM Connections

Science: What is wind power and how is it an advantage to use it?

Technology: How is technology used to understand use of wind for electricity production?

Engineering: How does design of technology used to prove the advantages of wind power?

Mathematics: Examination of measurement of impact positive/negative impact of wind power to a society.

Lesson 9

How can human impact on the environment be reduced by using a wind turbine?

1.3. What will you do today?

View the video at the location listed below.

https://www.youtube.com/watch?v=Ah5tM4kw9To

After you view the video, you and a partner will describe:

What are your findings after viewing the video?

1.4. Making Sense:

You will explore and read the site listed below: http://energy.gov/eere/wind/advantages-and-challenges-wind-energy

You will be placed in groups of 3 students.

You will identify the advantages and challenges of using a wind turbine.

Advantages of using a wind turbine:

Disadvantages of using a wind turbine:

2.1. What you will do next: You will be using an iPad or a laptop. Use Chrome as your browser for the internet. You will be asked to go to Popplet.com. On the popplet page, create a popplet with your group.

http://popplet.com/app/#/3668365

ID:a-singh@wiu.edu

PW: 462qwwxppq

Group 1: Explore the Advantages of WIND POWER

Questions your group will address in the popplet site:

- 1. What is the meaning of clean fuel source?
- 2. Examine and describe the meaning of "Wind is a domestic source of Energy."
- 3. Explain how "Wind could be considered Sustainable."

Group 2: Explore the Advantages of WIND POWER

Questions your group will address in the popplet site:

- 1. How is wind power cost effective?
- 2. How effective is it when wind turbines are built on existing farms or ranches?
- 3. Hoe does wind power create jobs and improve economy?

Group 3: Explore the Challenges of WIND POWER

Questions your group will address in the popplet site:

- 1. Explain with an example How Wind Power must still compete with conventional generation sources on cost.
- 2. Since more wind is existing in rural and less populated areas, how can this be a challenge?

Group 4: Explore the Challenges of WIND POWER

Questions your group will address in the popplet site:

- 1. Elaborate on Wind resource development might not be the most profitable use of land.
- 2. Provide example/s on -Turbines have caused noise and aesthetic population.
- 3. How could turbine blades damage local wildlife?

3.1. What will you do next?

You and your group will provide a presentation to your peers about the questions your group had to answer. You will showcase the popplet you created and the answers you wrote.

4.1. Making Sense:

Your peers will have an opportunity to access the popplet you created and comment and elaborate on your answers. They will provide **two positives** and **one suggestion** to your answers at the popplet site. Your group will be identified by the teacher.

5.1. What did I learn?

A short exit quiz is conducted. The questions are:

a. How can wind power be profitable?

b. Why can wind power have its challenges?

c. How can those challenges be addressed? What are your ideas?

Lesson 10: How does it compare when energy is produced by a wind turbine or with burning coal?

Lesson 10 Objective: By the end of this lesson, learners should be able to use ratios to demonstrate a comparison of using wind and coal for energy production.

Engagement	Exploration	Explanation	Extension	Evaluation
Learners view this video on Wind Power vs. Coal Power. They are asked to indicate what they choose and why.	Learners will play a game at NASA's climate kids site. http://climatekids.nasa.g ov/menu/energy/	The data gathered by learners in the exploration phase related to ratios and described by each group is analyzed.	The learners complete a ratio development activity they develop that compares wind power to solar power.	Learners write about how development of ratios is able to explain the use of wind power vs coal power.
what questions emerge? https://www.youtube.co m/watch?v=H65Co1W_ BCQ	First: Learners will play - PLAY POWER UP. It is about using wind turbine to power up a town. http://climatekids.nasa.g ov/power-up/ Second: Learners will explore The story of fossil fuels, Part 1: Coal http://climatekids.nasa.g	If there is positive for wind, the group gives 1+ for that question. If there is a negative response for that question, the questions obtains -1. The +1's and -1's are placed in a tally to find out what groups find out from each response. The teacher brings the discussion together to		

ov/fossil-fuels-coal/ Learners will gather at a center point in the class, and discuss the findings.	talk about the pros and cons of wind power as compared to using burning of coal to produce electricity.	
Based on the views: each group will develop a set of 5 questions about coal and wind power based on information gathered from their peers.		

STEM Connections

Science: How is wind power compared to coal power?

Technology: How is technology used to obtain power from wind, and coal?

Engineering: How does design of technology used to prove the advantages/challenges of wind power vs coal power?

Mathematics: How can wind power vs coal power be proved mathematically?

Lesson 10

How does it compare when energy is produced by a wind turbine or with burning coal?

1.1. What will you do today?

You will view the video listed below on the smart board/screen.

https://www.youtube.com/watch?v=H65Co1W_BCQ

What questions emerge after viewing this video?

- g. Question 1:_____
- **h.** Question 2:_____
- i. Question 3:_____
- **j.** Question 4:_____

The teacher will discuss your questions with the class.

2.1. What you will do next: You will play a game. The game is at the site listed below. It is NASA's climate kids' site. You are placed in a group of 3 members.

http://climatekids.nasa.gov/menu/energy/

First: You will play - PLAY POWER UP. It is about using wind turbine to power up a town.

http://climatekids.nasa.gov/power-up/

Second: Learners will explore- The story of fossil fuels, Part 1: Coal

http://climatekids.nasa.gov/fossil-fuels-coal/

2.2. What did you find out?

Learners will gather at a center point in the class, and discuss the findings.

Based on your views: Each group will develop a set of 5 questions about coal and wind power based on information gathered from their peers.

3.1. What will you do next?

You will explain to your teacher what your group did and what the findings were. This is related to the game you played.

The data gathered by learners in the exploration phase related to ratios and described by each group is analyzed.

If there is positive for wind, the group gives 1+ for that question. If there is a negative response for wind, the question obtains -1. The +1's and -1's are placed in a tally to find out what groups find out from each response.

You will discuss with your teacher about the pros and cons of wind power as compared to burning coal to produce electricity.

4.1. Making Sense: Observe other presentations.

Compare coal to wind power with the use of ratios.

How are they similar?

How do they differ?

5.1. What did I learn?

n. You will write a paper on google docs about how development of ratios is able to explain the use of wind power vs coal power.

Subject/Grade (DCI): Science/Earth Science/ 9-12 (Natural Resources; Human Impact on Earth Systems/Developing Possible Solutions, DCI).

Big Idea Statement: How to evaluate possible solutions to human impacts?

NGSS Standard: Earth and Human Activity

HS-ESS3: Performance Expectation

Students who demonstrate understanding can:

(9-12) HS- ESS3-4: Evaluate or refine a technological solutions that reduces impacts of human activities on natural systems. (Clarification Statement: Examples of data on the impacts of human activities could include the quantities and types of pollutants released, changes to biomass and species diversity, or areal changes in land surface use (such as for urban development, agriculture and livestock, or surface mining). Examples for limiting future impacts could range from local efforts (such as reducing, reusing, and recycling resources) to large-scale geoengineering design solutions (such as altering global temperatures by making large changes to the atmosphere or ocean)

Specific DCI: Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that preclude ecosystem degradation

Connections to other DCIs in this grade-band:

HS.PS1.B (HS-ESS3-3); HS.PS3.B (HS-ESS3-2),(HS-ESS3-5); HS.PS3.D (HS-ESS3-2),(HS-ESS3-5); HS.LS1.C (HS-ESS3-5); HS.LS2.A (HS-ESS3-2),(HS-ESS3-3); HS.LS2.B (HS-ESS3-2),(HS-ESS3-3),(HS-ESS3-6); HS.LS2.C (HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-6); HS.LS4.D (HS-ESS3-2),(HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-6); HS.ESS2.A (HS-ESS3-2),(HS-ESS3-3),(HS-ESS3-6); HS.ESS2.D (HS-ESS3-5); HS.ESS2.E (HS-ESS3-3)

Articulation of DCIs across grade-bands

MS.PS1.B (HS-ESS3-3); MS.PS3.B (HS-ESS3-5); MS.PS3.D (HS-ESS3-2),(HS-ESS3-5); MS.LS2.A (HS-ESS3-1),(HS-ESS3-2),(HS-ESS3-3); MS.LS2.B (HS-ESS3-2),(HS-ESS3-3); MS.LS2.C (HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-6); MS.LS4.C (HS-ESS3-3); MS.LS4.D (HS-ESS3-1),(HS-ESS3-2),(HS-ESS3-3); MS.ESS2.A (HS-ESS3-1),(HS-ESS3-4),(HS-ESS3-4),(HS-ESS3-5),(HS-ESS3-6); MS.ESS2.C (HS-ESS3-6); MS.ESS2.D (HS-ESS3-5); MS.ESS2.E (HS-ESS3-3),(HS-ESS3-4); MS.ESS3.A (HS-ESS3-6); MS.ESS3-6); MS.

1),(HS-ESS3-2),(HS-ESS3-3); MS.ESS3.B (HS-ESS3-1),(HS-ESS3-4),(HS-ESS3-5); MS.ESS3.C (HS-ESS3-2),(HS-ESS3-3),(HS-ESS3-4),(HS-ESS3-5),(HS-ESS3-5),(HS-ESS3-6); MS.ESS3.D (HS-ESS3-4),(HS-ESS3-5),(HS-ESS3-6)

Common Core State Standards Connections:

ELA/Literacy -

RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-ESS3-1), (HS-ESS3-2), (HS-ESS3-4), (HS-ESS3-5)

RST.11-12.2 Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms. (HS-ESS3-5)

RST.11-12.7 Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem. (HS-ESS3-5)

RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information. (HS-ESS3-2), (HS-ESS3-4)

WHST.9-12.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-ESS3-1)

Mathematics -

MP.2 Reason abstractly and quantitatively. (HS-ESS3-1), (HS-ESS3-2), (HS-ESS3-3), (HS-ESS3-4), (HS-ESS3-5), (HS-ESS3-6)MP.4 Model with mathematics. (HS-ESS3-3), (HS-ESS3-6)

HSN.Q.A.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-ESS3-1), (HS-ESS3-4), (HS-ESS3-5),(HS-ESS3-6)

HSN.Q.A.2 Define appropriate quantities for the purpose of descriptive modeling. (HS-ESS3-1), (HS-ESS3-4), (HS-ESS3-5), (HS-ESS3-6)

HSN.Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-ESS3-1), (HS-ESS3-4), (HS-ESS3-5), (HS-ESS3-6

Storyline Chart

9-12

Question	Phenomena	Engineering and Scientific Practice(s)	Disciplinary Core Idea (DCI) What we figured out?	Cross Cutting Concepts (CCC)
Lesson 11: How can I design better wind turbine blades for increased energy production?	Learners view a short video on various current designs of wind turbines especially for rural and urban environments. <u>https://www.youtube.co</u> <u>m/watch?v=fNudnI5tzf8</u> After viewing the video, learners are asked to write: A. Two questions B. Two comments about the video viewed. Learners are asked to post their questions and comments on the class KWL chart on the board.	Analyzing and Interpreting Data Analyzing data in 9–12 builds on K–8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data. Analyze data using computational models in order to make valid and reliable scientific claims. (HS-ESS3-5) Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 9–12 builds on K–8	ETS1.B: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (secondary to HS-ESS3-2),(secondary HS-ESS3-4)	Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-ESS3-1) Systems and System Models When investigating or describing a system, the boundaries and initial conditions of the system need to be defined and their inputs and outputs analyzed and described using models. (HS-ESS3-6) Connections to Engineering, Technology, and Applications of Science Engineers continuously modify these technological systems by applying scientific knowledge and

	experiences and	engineering design practices
	progresses to	to increase benefits while
	explanations and designs	decreasing costs and risks.
	that are supported by	(HS-ESS3-2),(HS-ESS3-4)
	multiple and	
	independent student-	Connections to Nature of
	generated sources of	Science
	evidence consistent with	
	scientific knowledge,	Science is a Human
	principles, and theories.	Endeavor
	Construct an explanation	Science is a result of human
	based on valid and	endeavors, imagination, and
	reliable evidence	creativity. (HS-ESS3-3)
	obtained from a variety	
	of sources (including	
	students' own	
	investigations, models,	
	theories, simulations,	
	peer review) and the	
	assumption that theories	
	and laws that describe	
	the natural world	
	operate today as they did	
	in the past and will	
	continue to do so in the	
	future. (HS-ESS3-1)	
	Design or refine a	
	solution to a complex	
	real-world problem,	
	based on scientific	
	knowledge, student-	
	generated sources of	
	evidence, prioritized	
	-	

		criteria, and tradeoff considerations. (HS- ESS3-4)		
Lesson 12: How can national wind turbine data be used to provide evidence to address the use of a natural resource for energy production?	Each member of the team will have a laptop or an iPad and they will access the site listed below. http://en.openei.org/wiki /Wind_for_Schools_Port al Each group will access wind turbine data from one location from download historical data site. Choose two locations from the pull down menu and select the year and submit. The data is obtained for one location at a time. The wind turbine data regarding the wind and the amount of electricity produced in Kilo Watt Hours is observed. Learners develop a data table to indicate 1.Wind	Analyzing and Interpreting Data Analyzing data in 9–12 builds on K–8 experiences and progresses to introducing more detailed statistical analysis, the comparison of data sets for consistency, and the use of models to generate and analyze data. Analyze data using computational models in order to make valid and reliable scientific claims. (HS-ESS3-5) Using Mathematics and Computational Thinking Mathematical and computational thinking in 9-12 builds on K-8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear	ESS3.A: Natural Resources Resource availability has guided the development of human society. (HS-ESS3-1) All forms of energy production and other resource extraction have associated economic, social, environmental, and geopolitical costs and risks as well as benefits. New technologies and social regulations can change the balance of these factors. ESS3.C: Human Impacts on Earth Systems The sustainability of human societies and the biodiversity that supports them requires responsible management of natural resources. (HS-ESS3-3)	Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects. (HS-ESS3-1) Stability and Change Change and rates of change can be quantified and modeled over very short or very long periods of time. Some system changes are irreversible. (HS-ESS3- 3),(HS-ESS3-5) Feedback (negative or positive) can stabilize or destabilize a system. (HS- ESS3-4) Engineers continuously modify these technological systems by applying scientific knowledge and engineering design practices to increase benefits while decreasing costs and risks.

2.Electricity (KWH) produced for each month of the year	functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions. Create a computational model or simulation of a phenomenon, designed device, process, or system. (HS-ESS3-3) Use a computational representation of phenomena or design solutions to describe and/or support claims and/or explanations.	Scientists and engineers can make major contributions by developing technologies that produce less pollution and waste and that preclude ecosystem degradation. (HS-ESS3- 4). ETS1.B: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts. (secondary to HS-ESS3-2),(secondary HS-ESS3-4)	(HS-ESS3-2),(HS-ESS3-4) New technologies can have deep impacts on society and the environment, including some that were not anticipated. (HS-ESS3-3)
---	---	--	---

Lesson 11: How can I design better wind turbine blades for increased energy production?

Lesson 11 Objective: By the end of this lesson, learners should be able to design and test wind turbine blades for increased energy production

Engagement	Exploration	Explanation	Extension	Evaluation
Learners are asked what they know about what it means to design a wind	Learners will work in groups of 3.	Each group will present what they did and an analysis of the data	How is wind used to make electricity?	Learners complete an exit – what you learned from the lesson
turbine.	Initial Question:	obtained. Each group	Each individual will	narrative detailing –
Learners are asked what	Which kind of blade design is best for a wind	will also describe what they learned from this	read the content located	1.Choice of Blade
designs of wind turbines	turbine?	activity to their peers.		2. Analysis of Data
are available currently.		Each group con cal	http://windeis.anl.gov/g	3. How is electricity
Learners view a short	various kinds of	another group 2	<u>ulue/basics/</u>	wind?
video on various current	materials to design and	questions about the	In each group:	
designs of wind turbines	test wind turbine blades.	design and analysis.	Learners will use a	
urban environments.	https://www.dropbox.co		answer the following	
	m/s/umtuqc3bv5m69c1/		questions. Each member	
https://www.youtube.co m/watch?y=fNudnI5tzf8	<u>Unit%202.pdf?dl=0</u>		of the group will answer two questions	
	Materials provided:			
After viewing the video,	1. A model wind turbine		1. What form of energy	
learners are asked to write:	on which blades can be changed.		15 wind power? 2. How is wind caused?	
A. Two	2. A voltage/current data		3. What is the difference	

questions B. Two comments about the video viewed.	recorder. 3. A box fan 4. A ruler 5. Resources for students to read.	between – wind power and wind energy? 4. Explain: Mechanical Power or Electricity. 5. How does a wind turbine make electricity?	
Learners are asked to	Blade materials	6. Describe –Cost	
post their questions and	1.Card Stock	Issues, environmental	
comments on the class	2. Card Board	concerns and supply and	
KWL chart on the	3. Paper Plates	transport issues dealing	
board.	4. Plastic Cups,	with using wind power.	
	5. Index Cards		
	6.1/4 dowels		
	7.Duct tapes/ glue		
	8. Scissors		
	Learners will design and build two designs. The two designs will need to complete two experimental runs and data will need to be collected to demonstrate which design produced maximum output of current.		
	Blade Design: 1. Learners can choose from the materials provided to build a wind turbine.		

 2. Materials that are pre- made by a company cannot be used. 3. The turbine blades cannot be more than 	
15" in length.4. Sharp edges of any blade cannot be developed	
Data Recording from Experimental Tests	
The data needs to be recorded in tables listed below.	
To calculate power output – Use the formula: P=VI Watts =volts* amperes	
Experimental test Data Tables:	
1VolAmPtp-Hig-h-Wi-	
nd	
--	
2 Vol Am P t p	
nd	
needs to be plotted in a line graph with two experimental design tests showing on the same graph.	
Questions to answer:1. Which material didyou choose to build theblades and why?2. Which design workedbest for power output,and why?3. What changes couldyou make to your blade	

designs to create more power output? 4. Write a short narrative to explain data from your tables and graph.		
--	--	--

STEM Connections

Science: Wind and how it ensures the generation electricity

Technology: The development of a devise that is able to harvest wind to generate electricity

Engineering: The design and testing of the turbine blades

Mathematics: The application of P=V*I formula to determine power output by each design

Lesson 11

How can I design better wind turbine for increased energy production?

1.1. What will you do today?

Answer the following questions:

1. What do you know about designing a wind turbine?

2. What designs of wind turbines are available currently?

1.2. Making Sense:

You are provided with an iPad or a device. You need to view a video at the link provided below.

a. Video on current designs of wind turbines for rural and urban environments.

https://www.youtube.com/watch?v=fNudnI5tzf8

After viewing the video you will write

5. TWO QUESTIONS on the (W) section of the KWL on the class KWL chart on the board. Question 1:

Question 2:

On the small whiteboard with a dry erase pen provided to you explain

6. Write TWO COMMENTS about the video on the comment section of the board. Comment 1:

Comment 2:

2.1. You will investigate wind turbine blades design. The question you will explore is: Which Kind of Blade design is best for a wind turbine?

You are in a group of three peers.

The materials you are provided with:

- 1. A model wind turbine on which blades can be changed.
- 2. A voltage/current data recorder.
- 3. A box fan
- 4. A ruler
- 5. Resources for students to read.

Blade materials you are provided:

- 1. Card Stock
- 2. Card Board
- 3. Paper Plates
- 4. Plastic Cups,
- 5. Index Cards
- 6.1/4 dowels
- 7. Duct tapes/ glue
- 8. Scissor

Your group will design and build two designs. The two designs will need to complete two experimental runs and data will need to be collected to demonstrate which design produced maximum output of current.

Blade Design Requirements:

- 1. You can choose from the materials provided to build a wind turbine.
- 2. Materials that are pre-made by a company cannot be used.
- 3. The turbine blades cannot be more than 15" in length.
- 4. Sharp edges of any blade cannot be developed.

2.2. What will you do?

Test your blade designs and record your observations on the data table provided. The blades need to be tested for low and high wind on the designed blade.

To calculate power output, a formula will be used. It is:

Power (watts) = Voltage (V)* Ampere (A)

Observation Table

	Sketch of Blade Design	Voltage	Ampere	Power
Design 1				
High Wind				
Low Wind				
Design 2				
High Wind				
Low Wind				

3.1. Your group will analyze the data from the observation table by showing the data on a graph provided below. Plot a line graph of the data in the table.

3.2. Making Sense of the data in the table and the graph:

Your group will answer the following question:

1. Which material did you choose to build the blades and why?

2. Which design worked best for power output, and why?

- 3. What changes could you make to your blade designs to create more power output?
- 4. Write a short narrative to explain data from your tables and graph.

4.1. Making Sense: Your group will present what you did and an analysis of data.

Question 1: Describe what you learned from this activity to your peers.

4.2. Making Sense: Your group can ask another group 2 questions about the design and the analysis.

Question 1:

Question 2:

4.3. What will you do? You will answer the following question.

Question 1: How is wind used to make electricity?

You will read the content from the site listed below independently:

http://windeis.anl.gov/guide/basics/

After reading the document, you will create a shared google document with your group. You will answer the following questions as a group.

- 1. What form of energy is wind power?
- 2. How is wind caused?
- 3. What is the difference between wind power and wind energy?
- 4. Explain: Mechanical Power or Electricity.
- 5. How does a wind turbine make electricity?
- 6. Describe –Cost Issues, environmental concerns and supply and transport issues dealing with using wind power.

5.2. What did I learn?

Learners complete an exit slip provided by the teacher– What you learned from the lesson narrative detailing the following subheadings.

- 1. Choice of Blade design
- 2. Analysis of Data
- 3. How is electricity made by harvesting the wind?

Lesson 12: How can state/national wind turbine data be used to provide evidence to address the use of a natural resource for energy production?

Lesson 12 Objective: By the end of this lesson, learners should be able to analyze and interpret wind turbine data to provide evidence to address the use of wind as a natural resource for energy.

Engagement	Exploration	Explanation	Extension	Evaluation
The teacher asks	Learners will be	The groups provide an	Class survey is	The following questions
learners:	grouped in groups of 3	analysis of the wind	conducted. Information	are answered at the end
What did you learn	members.	turbine data for both	data about -How	of the lesson
about designing blades		locations selected.	effective is wind power	independently.
for a wind turbine to	Each member of the		in comparison to coal	
generate electricity?	team will have a laptop	The comparison analysis	with respect to	1. How is energy made
	or an iPad and they will	is also presented to the	1. Cost involved?	from Coal and Wind?
Create a KWL chart	access the sites listed	whole class.	2. Economy	2. How much does it
about Wind Turbines.	below.		is conducted –	cost to make a certain
	http://www.illinoiswind.	Findings about	Fossil Fuel vs	amount of electricity
Learners will be taken to	<u>org/</u>	the relationship between	Renewable Fuel?	from coal as compared
the Wind Turbine site		wind speed and		to wind?
close to the school.	http://en.openei.org/wiki	electricity generated is	Learners obtain	3. What are the pros and
Learners will be	/Wind_for_Schools_Por	presented.	information from the	cons of using coal or
presented with the	tal		site listed below to draw	wind for generating
information by the			a conclusion on wind vs	electricity?
guide.	Choose two locations		coal for electricity	4. Why should common
	from the pull down		production.	man be concerned by
The guide will direct	menu and select the year			coal or wind as a
learners to the site	and submit. The data is		http://www.environment	resources of generating
below to view wind	obtained for one		.nsw.gov.au/resources/h	electricity?
maps and data.	location at a time. The		ouseholds/WindEnergyf	

http://apps2.eere.energy. gov/wind/windexchange /windmaps/	wind turbine data regarding the wind and the amount of electricity produced in Kilo Watt Hours is observed.	actsheet.pdf http://www.eia.gov/kids/ energy.cfm?page=coal_ home-basics	
Learners are asked:			
1. What do these wind maps and data convey? Learners will be informed that they will be viewing live data from wind turbines in the nation.	Learners develop a data table to indicate 1.Wind 2.Electricity (KWH) produced for each month of the year A comparison is made with the two choices.	The class will have two teams that will debate on Coal vs Wind Power to generate electricity. The two teams will debate on these questions: 1. How is energy made from Coal and Wind? 2. How much does it cost to make a certain amount of electricity from coal as compared to wind? 3. What are the pros and cons of using coal or wind for generating electricity? 4. Why should common man be concerned by coal or wind as a resources of generating electricity?	

STEM Connections

Science: Meaning of Wind Data

Technology: Application of wind turbines to gather wind data from the nation

Engineering: The use of effectively designed wind turbines ability to harvest maximum wind to generate electricity

Mathematics: Analyzing quantitative wind data (empirical) to predict the effective use of wind to generate electricity

Lesson 12

How can state/national wind turbine data be used to provide evidence to address the use of a natural resource for energy production?

1.1. What will you do today?

Answer the following questions:

3. What did you learn about designing blades for a wind turbine to generate electricity?

1.2. Making Sense:

Create a KWL chart about WIND TURBINES and complete how much you are able to:

Know (K):

Want to Know (W):

Learn (L):

2.1. You will go on a field trip to the WIND TURBINE LOCATION. The guide/instructor will demonstrate to show you the wind data collected at a site. The site is listed below.

http://apps2.eere.energy.gov/wind/windexchange/windmaps/

You are asked:

Question 1: What do these wind maps and data convey?

2.2. What will you do?

1. You are placed in a group of three peers. Each group will have a laptop or an iPad for you to access the sites listed below.

Site 1:

http://www.illinoiswind.org/

Site 2:

http://en.openei.org/wiki/Wind_for_Schools_Portal

2. Choose two locations from the pull down menu and select the year and submit. The data is obtained for one location at a time. The wind turbine data regarding the wind and the amount of electricity produced in Kilo Watt Hours is observed.

3. Learners develop a data table to indicate

1. Wind

2. Electricity (KWH) produced for each month of the year

A comparison is made with the two choices.

	State/City	Wind	Electricity
Location 1			
Location 2			

3.1. Your group will analyze the data from the observation table above.

Your group will provide an analysis of the wind turbine data for both locations selected.

The comparison analysis is also presented to the whole class.

Findings about:

1. The relationship between **wind speed** and **electricity generated** is presented.

4.1. What will you do? What do you think? A class survey is conducted. The answers are listed on the board.

Question 1: How effective is wind power in comparison to coal with respect to a. Cost involved, b. Economy

4.2. Making Sense: You will access the sites listed below.

Site 1: http://www.environment.nsw.gov.au/resources/households/WindEnergyfactsheet.pdf

Site 2: <u>http://www.eia.gov/kids/energy.cfm?page=coal_home-basics</u>

The class will have two teams that will debate on Coal vs Wind Power to generate electricity.

Rules for the debate:

- 1. The teacher will choose the two teams.
- 2. The teacher is President of the debate and will decide on the winner.
- 3. The teacher will choose the two leaders for each team.
- 4. A coin toss will determine which team leader will start with opening statements.
- 5. The opening statements will be 1 minute in length.
- 6. The opening statements will not have any rebuttal.

- 7. After the opening statement, the team that won the toss will begin with the following questions. 1 min is provided and a rebuttal is provided for 1 min.
 - a. Description of the fuel
 - b. Cost involved with the production of the fuel
 - c. Impact on livelihood
 - d. Impact on environment (air/water/land)
 - e. Impact on economy
 - f. Impact on pollution
- 8. The interaction is limited to 4, one minute sections of back and forth.

5.1. What did I learn? Answer the following questions independently:

- 1. How is energy made from Coal and Wind?
- 2. How much does it cost to make a certain amount of electricity from coal as compared to wind?
- 3. What are the pros and cons of using coal or wind for generating electricity?
- 4. Why should common man be concerned by coal or wind as a resource of generating electricity?

Authors:

Abha Singh (Ph.D. Science Education)

Laverne Logan (Ph.D. Science Education)

James Olsen (Ph.D. Mathematics Education)

Robert Mann (Ph.D. Mathematics Education)

Kimberly Hartweg (Ph.D. Mathematics Education)

Authors Information:

Abha Singh, Ph.D. Science Education

Dr. Singh earned her Ph.D. in Science Education from the University of Iowa, Iowa City, USA. She teaches undergraduate and graduate courses in science education and education. Dr. Singh has facilitated several science professional development (PD) for elementary, middle and high school in-service teachers for ISBE grant initiatives through the Regional Office of Education: 1. Northern Illinois Mathematics and Science (NIMS) for two years; 2. Science, Technology, Engineering and Mathematics (STEM) PD for Western Illinois Mathematics Teacher Transformation Institute (WI-MTTI) for two years; 3. PD for K-6 teachers in the integration of science and literacy through a grant from the Tracey Family Foundation. Her research is in the area of integrating science and literacy. She has presented at State, National and International Conferences and facilitates science education workshops for in-service science teachers.

James Olsen, Ph.D. Mathematics Education

Dr. James Olsen is a mathematics education faculty member at Western Illinois University. He taught high school mathematics for ten years in Nebraska. He holds two Master's degrees (Mathematics Education and Mathematics). His PhD, in Educational Mathematics is from the University of Northern Colorado. At W.I.U. he teaches mathematics courses and teaching methods courses for prospective and practicing teachers. His research interests are mental math, student understanding of the function concept, multiplicative reasoning (including proportional reasoning and rates), educational uses of technology, student understanding of fractions, decimals, and percent's, and problem solving.

Laverne Logan, Ph.D. Science Education

Dr. Logan earned his Ph.D. from the University of Iowa, Iowa City, USA. His area of specialization is Science and Middle Level Education. He currently serves as associate professor and teaches graduate and undergraduate courses in Science and Middle Level Education in the Quad Cities Center.

Dr. Logan joined the Science Education Center after teaching elementary, junior high and secondary science in the Iowa public schools. He has presented at past NSTA, ISTA, as well as other science conferences. He also has been involved in numerous grant activities. His area of interests includes environmental and physical sciences. As part of those interests he has been involved with the Living Lands and Water organization. Dr. Logan is also involved with Illinois Science Olympiad both at the regional and state level competition as an Event Supervisor. He also assists with the WIU Annual PreK-8 Science Update Conference.

Robert Mann, Ph.D. Mathematics Education

Dr. Mann earned his Ph.D. in Curriculum and Instruction with an emphasis in Mathematics Education from the University of Nebraska-Lincoln, USA. His research has been connected to standards in mathematics, student achievement and understanding in mathematics at the K-12 level, and the college-readiness of students as they transition from secondary to post-secondary work in mathematics.

Dr. Mann published many articles related to problem-solving tasks and activities to use in the K-12 classroom to promote mathematical learning, and have presented many talks and workshops about engaging and enlightening students with interesting and thought-provoking mathematics. Dr. Mann was also the past-President of the Illinois Council of Teachers of Mathematics (ICTM), a member of the leadership team of a state-wide multi-million dollar STEM grant, and a former chair of the editorial board of the NCTM journal Teaching Children Mathematics.

Kim Hartweg, Ph.D. Planning, Policy & Leadership/Multimedia Technology

Dr. Hartweg earned her Ph.D. in Planning, Policy & Leadership/Multimedia Technology from the University of Iowa, Iowa City, USA. Her Master's degree was in Elementary Education and Mathematics from Western Illinois University. Dr. Hartweg teaches Elementary and Early Childhood Mathematics Methods to prospective teachers. Her area of research is in the area of Mathematics Problem Solving. She participated in the -Improving of the Teaching of Mathematics through Lesson Study, a research study conducted by the Mathematics Education faculty in the Mathematics Department. Dr. Hartweg presents at State, Regional, National, and International Mathematics Education Conferences.